SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0193 1849 ;lar1:(oru)"

Search: L773:0193 1849 > Örebro University

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fredriksson, Katarina, et al. (author)
  • Derangements in mitochondrial metabolism in intercostal and leg muscle of critically ill patients with sepsis-induced multiple organ failure
  • 2006
  • In: American Journal of Physiology. Endocrinology and Metabolism. - Bethesda, USA : American Physiological Society. - 0193-1849 .- 1522-1555. ; 291:5, s. E1044-50
  • Journal article (peer-reviewed)abstract
    • Critically ill patients treated for multiple organ failure often develop muscle dysfunction. Here we test the hypothesis that mitochondrial and energy metabolism are deranged in leg and intercostal muscle of critically ill patients with sepsis-induced multiple organ failure. Ten critically ill patients suffering from sepsis-induced multiple organ failure and requiring mechanical ventilation were included in the study. A group (n = 10) of metabolically healthy age- and sex-matched patients undergoing elective surgery were used as controls. Muscle biopsies were obtained from the vastus lateralis (leg) and intercostal muscle. The activities of citrate synthase and mitochondrial respiratory chain complexes I and IV and concentrations of ATP, creatine phosphate, and lactate were analyzed. Morphological evaluation of mitochondria was performed by electron microscopy. Activities of citrate synthase and complex I were 53 and 60% lower, respectively, in intercostal muscle of the patients but not in leg muscle compared with controls. The activity of complex IV was 30% lower in leg muscle but not in intercostal muscle. Concentrations of ATP and creatine phosphate were, respectively, 40 and 34% lower, and lactate concentrations were 43% higher in leg muscle but not in intercostal muscle. We conclude that both leg and intercostal muscle show a twofold decrease in mitochondrial content in intensive care unit patients with multiple organ failure, which is associated with lower concentrations of energy-rich phosphates and an increased anaerobic energy production in leg muscle but not in intercostal muscle.
  •  
2.
  • Frøbert, Anne Mette, et al. (author)
  • Circulating insulin-like growth factor (IGF) system adaptations in hibernating brown bears indicate increased tissue IGF availability
  • 2022
  • In: American Journal of Physiology. Endocrinology and Metabolism. - : HighWire Press. - 0193-1849 .- 1522-1555. ; 323:3, s. E307-E318
  • Journal article (peer-reviewed)abstract
    • Brown bears conserve muscle and bone mass during six months of inactive hibernation. The molecular mechanisms underlying hibernation physiology may have translational relevance for human therapeutics. We hypothesize that protective mechanisms involve increased tissue availability of the insulin-like growth factors (IGFs). In subadult Scandinavian Brown Bears, we observed that mean plasma IGF-1 and IGF-2 during hibernation was reduced to 36±10% and 56±15%, respectively, compared to the active state (N=12). Western ligand blotting identified IGFBP-3 as the major IGF binding protein in the active state, while IGFBP-2 was co-dominant during hibernation. Acid labile subunit (ALS) levels in hibernation were 41±16% those of the active state (N=6). Analysis of available grizzly bear RNA sequencing data revealed unaltered liver mRNA IGF-1, IGFBP-2, and IGFBP-3 levels, whereas ALS was significantly reduced during hibernation (N=6). Reduced ALS synthesis and circulating levels during hibernation should prompt a shift from ternary IGF/IGFBP/ALS to smaller binary IGF/IGFBP complexes, thereby increasing IGF tissue availability. Indeed, Size Exclusion Chromatography of bear plasma, demonstrate a shift to lower molecular weight IGF-containing complexes in the hibernating versus the active state. Further, we note that the major IGF-2 mRNA isoform expressed in liver in both Scandinavian brown bears and grizzly bears was an alternative splice variant in which Ser29 was replaced with a tetrapeptide possessing a positively charged Arg residue. Homology modelling of the bear IGF-2/IGFBP-2 complex showed the tetrapeptide in proximity to the heparin binding domain involved in bone-specific targeting of this complex. In conclusion, this study provides data which suggest that increased IGF tissue availability combined with tissue-specific targeting contribute to tissue preservation in hibernating bears.
  •  
3.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view