SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0264 6021 srt2:(2010-2019);lar1:(kth)"

Sökning: L773:0264 6021 > (2010-2019) > Kungliga Tekniska Högskolan

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Larsbrink, Johan, et al. (författare)
  • Structural and enzymatic characterization of a glycoside hydrolase family 31 alpha-xylosidase from Cellvibrio japonicus involved in xyloglucan saccharification
  • 2011
  • Ingår i: Biochemical Journal. - 0264-6021 .- 1470-8728. ; 436, s. 567-580
  • Tidskriftsartikel (refereegranskat)abstract
    • The desire for improved methods of biomass conversion into fuels and feedstocks has re-awakened interest in the enzymology of plant cell wall degradation. The complex polysaccharide xyloglucan is abundant in plant matter, where it may account for up to 20% of the total primary cell wall carbohydrates. Despite this, few studies have focused on xyloglucan saccharification, which requires a consortium of enzymes including endo-xyloglucanases, alpha-xylosidases, beta-galactosidases and alpha-L-fucosidases, among others. In the present paper, we show the characterization of Xy131A, a key alpha-xylosidase in xyloglucan utilization by the model Gram-negative soil saprophyte Cellvibrio japonicus. CjXy131A exhibits high regiospecificity for the hydrolysis of XGOs (xylogluco-oligosaccharides), with a particular preference for longer substrates. Crystallographic structures of both the apo enzyme and the trapped covalent 5-fluoro-beta-xylosyl-enzyme intermediate, together with docking studies with the XXXG heptasaccharide, revealed, for the first time in GH31 (glycoside hydrolase family 31), the importance of PA14 domain insert in the recognition of longer oligosaccharides by extension of the active-site pocket. The observation that CjXy131A was localized to the outer membrane provided support for a biological model of xyloglucan utilization by C. japonicas, in which XGOs generated by the action of a secreted endo-xyloglucanase are ultimately degraded in close proximity to the cell surface. Moreover, the present study diversifies the toolbox of glycosidases for the specific modification and saccharification of cell wall polymers for biotechnological applications.
  •  
2.
  • Lombard, Vincent, et al. (författare)
  • A hierarchical classification of polysaccharide lyases for glycogenomics
  • 2010
  • Ingår i: Biochemical Journal. - 0264-6021 .- 1470-8728. ; 432, s. 437-444
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbohydrate-active enzymes face huge substrate diversity in a highly selective manner using only a limited number of available folds. They are therefore subjected to multiple divergent and convergent evolutionary events. This and their frequent modularity render their functional annotation in genomes difficult in a number of cases. In the present paper, a classification of polysaccharide lyases (the enzymes that cleave polysaccharides using an elimination instead of a hydrolytic mechanism) is shown thoroughly for the first time. Based on the analysis of a large panel of experimentally characterized polysaccharide lyases, we examined the correlation of various enzyme properties with the three levels of the classification: fold, family and subfamily. The resulting hierarchical classification, which should help annotate relevant genes in genomic efforts, is available and constantly updated at the Carbohydrate-Active Enzymes Database (http://www.cazy.org).
  •  
3.
  • Selles, Benjamin, et al. (författare)
  • Hydroperoxide and peroxynitrite reductase activity of poplar thioredoxin-dependent glutathione peroxidase 5 : kinetics, catalytic mechanism and oxidative inactivation.
  • 2012
  • Ingår i: Biochemical Journal. - 0264-6021 .- 1470-8728. ; 442, s. 369-380
  • Tidskriftsartikel (refereegranskat)abstract
    • Glutathione peroxidases constitute a family of peroxidases, including selenocysteine- or cysteine-containing isoforms ((SeCys- or Cys-Gpxs) which are regenerated by glutathione or thioredoxins, (Trxs) respectively. We present here new data concerning the substrates of poplar Gpx5 and the residues involved in its catalytic mechanism. This study establishes the capacity of this Cys-Gpx to reduce peroxynitrite with a catalytic efficiency of 106 M-1 s-1. In PtGpx5, Glu79, which replaces the Gln usually found in Gpx catalytic tetrad, is likely involved in substrate selectivity. Although the redox midpoint potential of the Cys44-Cys92 disulfide and the pKa of Cys44 are not modified in the E79Q variant, it exhibited significantly improved kinetic parameters (Kperoxide and kcat) with tert-butyl hydroperoxide. The characterization of the monomeric Y151R variant demonstrated that PtGpx5 is not an obligate homodimer. Also, we show that the conserved Phe90 is important for Trx recognition and that Trx-mediated recycling of PtGpx5 occurs via the formation of a transient disulfide between the Trx catalytic cysteine and the Gpx5 resolving cysteine. Finally, we demonstrate that the conformational changes observed during the transition from the reduced to the oxidized form of PtGpx5 are primarily determined by the oxidation of the peroxidatic cysteine into sulfenic acid. Besides, mass spectrometry analysis of in vitro oxidized PtGpx5 demonstrated that the peroxidatic cysteine can be over-oxidized into sulfinic or sulfonic acids. This suggests that some isoforms could have dual functions potentially acting as hydrogen peroxide- and peroxynitrite-scavenging systems and/or as mediators of peroxide signalling as proposed for 2-Cys peroxiredoxins.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy