SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0264 6021 OR L773:1470 8728 ;pers:(Manganiello V.)"

Sökning: L773:0264 6021 OR L773:1470 8728 > Manganiello V.

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Castan, Isabelle, et al. (författare)
  • Mechanisms of inhibition of lipolysis by insulin, vanadate and peroxovanadate in rat adipocytes
  • 1999
  • Ingår i: Biochemical Journal. - 0264-6021. ; 339, s. 281-289
  • Tidskriftsartikel (refereegranskat)abstract
    • Vanadate and peroxovanadate (pV), potent inhibitors of tyrosine phosphatases, mimic several of the metabolic actions of insulin. Here we compare the mechanisms for the anti-lipolytic action of insulin, vanadate and pV in rat adipocytes. Vanadate (5 mM) and pV (0.01 mM) inhibited lipolysis induced by 0.01-1 microM isoprenaline, vanadate being more and pV less efficient than insulin (1 nM). A loss of anti-lipolytic effect of pV was observed by increasing the concentration of isoprenaline and/or pV. pV induced tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 to a greater extent than insulin, whereas vanadate affected these components little if at all. In addition, only a higher concentration (0.1 mM) of pV induced the tyrosine phosphorylation of p85, the 85 kDa regulatory subunit of phosphoinositide 3-kinase (PI-3K). Vanadate activated PI-3K-independent (in the presence of 10 nM isoprenaline) and PI-3K-dependent (in the presence of 100 nM isoprenaline) anti-lipolytic pathways, both of which were found to be independent of phosphodiesterase type 3B (PDE3B). pV (0.01 mM), like insulin, activated PI-3K- and PDE3B-dependent pathways. However, the anti-lipolytic pathway of 0.1 mM pV did not seem to require insulin receptor substrate-1-associated PI-3K and was found to be partly independent of PDE3B. Vanadate and pV (only at 0.01 mM), like insulin, decreased the isoprenaline-induced activation of cAMP-dependent protein kinase. Overall, these results underline the complexity and the diversity in the mechanisms that regulate lipolysis.
  •  
2.
  • Landström, Tova, et al. (författare)
  • Down-regulation of cyclic-nucleotide phosphodiesterase 3B in 3T3-L1 adipocytes induced by tumour necrosis factor alpha and cAMP
  • 2000
  • Ingår i: Biochemical Journal. - 0264-6021. ; 346:2, s. 337-343
  • Tidskriftsartikel (refereegranskat)abstract
    • We have used murine 3T3-L1 cells, which differentiate in culture and acquire morphological and biochemical features of mature adipocytes, as a model for studying the expression of cyclic-nucleotide phosphodiesterase (PDE) 3B activity, protein and mRNA during differentiation and during long-term treatment of the cells with tumour necrosis factor alpha (TNF-alpha), a cytokine associated with insulin resistance, and a cAMP analogue, N(6),2'-O-dibutyryl cAMP (dbcAMP). PDE3B activity, protein and mRNA could be detected 4 days after the initiation of differentiation of 3T3-L1 preadipocytes. Treatment of 3T3-L1 adipocytes with 10 ng/ml TNF-alpha for 24 h produced a maximal (50%) decrease in PDE3B activity, protein and mRNA, which was well correlated with both activation of protein kinase A (PKA) and stimulation of lipolysis, presumably reflecting an increase in intracellular cAMP concentration. To investigate the effect of cAMP on PDE3B we treated 3T3-L1 adipocytes with dbcAMP. After 4 h with 0.5 mM dbcAMP, PDE3B activity was decreased by 80%, which was also correlated with a decrease in PDE3B protein and mRNA. This effect was abolished in the presence of N-[2-(bromocinnamylamino)ethyl]-5-isoquinolinesulphonamide] (H-89), a specific PKA inhibitor. We conclude that the lipolytic effect of TNF-alpha involves the down-regulation of PDE3B, which is associated with increased activation of PKA, presumably owing to increased levels of cAMP. In addition, the PKA activation induced by dbcAMP resulted in the down-regulation of PDE3B. These results, which suggest that PDE3B is a novel target for long-term regulation by TNF-alpha and cAMP, could contribute to the understanding of the mechanisms of insulin resistance.
  •  
3.
  • Resjö, Svante, et al. (författare)
  • Phosphorylation and activation of phosphodiesterase type 3B (PDE3B) in adipocytes in response to serine/threonine phosphatase inhibitors: deactivation of PDE3B in vitro by protein phosphatase type 2A
  • 1999
  • Ingår i: Biochemical Journal. - 0264-6021. ; 341, s. 245-839
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphodiesterase type 3B (PDE3B) has been shown to be activated and phosphorylated in response to insulin and hormones that increase cAMP. In order to study serine/threonine protein phosphatases involved in the regulation of rat adipocyte PDE3B, we investigated the phosphorylation and activation of PDE3B in vivo in response to phosphatase inhibitors and the dephosphorylation and deactivation of PDE3B in vitro by phosphatases purified from rat adipocyte homogenates. Okadaic acid and calyculin A induced dose- and time-dependent activation of PDE3B. Maximal effects were obtained after 30 min using 1 microM okadaic acid (1.8-fold activation) and 300 nM calyculin A (4-fold activation), respectively. Tautomycin and cyclosporin A did not induce activation of PDE3B. Incubation of adipocytes with 300 nM calyculin A inhibited protein phosphatase (PP) 1 and PP2A completely. Okadaic acid (1 microM) reduced PP2A activity by approx. 50% but did not affect PP1 activity, and 1 microM tautomycin reduced PP1 activity by approx. 60% but PP2A activity by only 11%. This indicates an important role for PP2A in the regulation of PDE3B. Furthermore, rat adipocyte PDE3B phosphatase activity co-purified with PP2A but not with PP1 during MonoQ chromatography. As compared with insulin, okadaic acid and calyculin A induced phosphorylation of PDE3B by 2.8- and 14-fold respectively, whereas tautomycin and cyclosporin A had no effect. Both calyculin A and okadaic acid induced phosphorylation on serine 302, the site known to be phosphorylated on PDE3B in response to insulin and isoproterenol (isoprenaline), as well as on sites not identified previously. In summary, PP2A seems to be involved in the regulation of PDE3B in vivo and can act as a PDE3B phosphatase in vitro. In comparison with insulin, calyculin A induced a dramatic activation of PDE3B and both calyculin A and okadaic acid induced phosphorylation on additional sites, which could have a role in signalling pathways not yet identified.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3
Typ av publikation
tidskriftsartikel (3)
Typ av innehåll
refereegranskat (3)
Författare/redaktör
Degerman, Eva (3)
Resjö, Svante (1)
Landström, Tova (1)
Mei, Jie (1)
Karlsson, Marie (1)
visa fler...
Castan, Isabelle (1)
Wijkander, Jonny (1)
Oknianska, A (1)
Zolnierowicz, S (1)
visa färre...
Lärosäte
Lunds universitet (3)
Språk
Engelska (3)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy