SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0302 766X ;lar1:(kth)"

Sökning: L773:0302 766X > Kungliga Tekniska Högskolan

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Wei, et al. (författare)
  • Super-resolution structured illumination fluorescence microscopy of the lateral wall of the cochlea : the Connexin26/30 proteins are separately expressed in man
  • 2016
  • Ingår i: Cell and Tissue Research. - : Springer. - 0302-766X .- 1432-0878. ; , s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally 360 million people have disabling hearing loss and, of these, 32 million are children. Human hearing relies on 15,000 hair cells that transduce mechanical vibrations to electrical signals in the auditory nerve. The process is powered by the endo-cochlear potential, which is produced by a vascularized epithelium that actively transports ions in conjunction with a gap junction (GJ) system. This “battery” is located “off-site” in the lateral wall of the cochlea. The GJ syncytium contains the GJ protein genes beta 2 (GJB2/connexin26 (Cx26)) and 6 (GJB6/connexin30 (Cx30)), which are commonly involved in hereditary deafness. Because the molecular arrangement of these proteins is obscure, we analyze GJ protein expression (Cx26/30) in human cochleae by using super-resolution structured illumination microscopy. At this resolution, the Cx26 and Cx30 proteins were visible as separate plaques, rather than being co-localized in heterotypic channels, as previously suggested. The Cx26 and Cx30 proteins thus seem not to be co-expressed but to form closely associated assemblies of GJ plaques. These results could assist in the development of strategies to treat genetic hearing loss in the future.
  •  
2.
  • Mohamed-Ahmed, S., et al. (författare)
  • Comparison of bone regenerative capacity of donor-matched human adipose–derived and bone marrow mesenchymal stem cells
  • 2021
  • Ingår i: Cell and Tissue Research. - : Springer Nature. - 0302-766X .- 1432-0878. ; 383:3, s. 1061-1075
  • Tidskriftsartikel (refereegranskat)abstract
    • Adipose-derived stem cells (ASC) have been used as an alternative to bone marrow mesenchymal stem cells (BMSC) for bone tissue engineering. However, the efficacy of ASC in bone regeneration in comparison with BMSC remains debatable, since inconsistent results have been reported. Comparing ASC with BMSC obtained from different individuals might contribute to this inconsistency in results. Therefore, this study aimed to compare the bone regenerative capacity of donor-matched human ASC and BMSC seeded onto poly(l-lactide-co-ε-caprolactone) scaffolds using calvarial bone defects in nude rats. First, donor-matched ASC and BMSC were seeded onto the co-polymer scaffolds to evaluate their in vitro osteogenic differentiation. Seeded scaffolds and scaffolds without cells (control) were then implanted in calvarial defects in nude rats. The expression of osteogenesis-related genes was examined after 4 weeks. Cellular activity was investigated after 4 and 12 weeks. Bone formation was evaluated radiographically and histologically after 4, 12, and 24 weeks. In vitro, ASC and BMSC demonstrated mineralization. However, BMSC showed higher alkaline phosphatase activity than ASC. In vivo, human osteogenesis–related genes Runx2 and collagen type I were expressed in defects with scaffold/cells. Defects with scaffold/BMSC had higher cellular activity than defects with scaffold/ASC. Moreover, bone formation in defects with scaffold/BMSC was greater than in defects with scaffold/ASC, especially at the early time-point. These results suggest that although ASC have the potential to regenerate bone, the rate of bone regeneration with ASC may be slower than with BMSC. Accordingly, BMSC are more suitable for bone regenerative applications.
  •  
3.
  • Nilsson, Harriet, et al. (författare)
  • Effects of hyperosmotic stress on cultured airway epithelial cells
  • 2007
  • Ingår i: Cell and Tissue Research. - : Springer Science and Business Media LLC. - 0302-766X .- 1432-0878. ; 330:2, s. 257-269
  • Tidskriftsartikel (refereegranskat)abstract
    • Inhalation of hyperosmotic solutions (salt, mannitol) has been used in the treatment of patients with cystic fibrosis or asthma, but the mechanism behind the effect of hyperosmotic solutions is unclear. The relation between osmolarity and permeability changes was examined in an airway cell line by the addition of NaCl, NaBr, LiCl, mannitol, or xylitol (295–700 mOsm). Transepithelial resistance was measured as an indicator of the tightness of the cultures. Cell-cell contacts and morphology were investigated by immunofluorescence and by transmission electron microscopy, with lanthanum nitrate added to the luminal side of the epithelium to investigate tight junction permeability. The electrolyte solutions caused a significant decrease in transepithelial resistance from 450 mOsm upwards, when the hyperosmolar exposure was gradually increased from 295 to 700 mOsm; whereas the nonelectrolyte solutions caused a decrease in transepithelial resistance from 700 mOsm upwards. Old cultures reacted in a more rigid way compared to young cultures. Immuno-fluorescence pictures showed weaker staining for the proteins ZO-1, claudin-4, and plakoglobin in treated samples compared to the control. The ultrastructure revealed an increased number of open tight junctions as well as a disturbed morphology with increasing osmolarity, and electrolyte solutions opened a larger proportion of tight junctions than nonelectrolyte solutions. This study shows that hyperosmotic solutions cause the opening of tight junctions, which may increase the permeability of the paracellular pathway and result in increased transepithelial water transport.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy