SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0302 766X ;pers:(Nässel Dick R)"

Sökning: L773:0302 766X > Nässel Dick R

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carlsson, Mikael A., et al. (författare)
  • Distribution of short neuropeptide F and its receptor in neuronal circuits related to feeding in larval Drosophila
  • 2013
  • Ingår i: Cell and Tissue Research. - : Springer Science and Business Media LLC. - 0302-766X .- 1432-0878. ; 353:3, s. 511-523
  • Tidskriftsartikel (refereegranskat)abstract
    • Four forms of short neuropeptide F (sNPF1-4), derived from the gene snpf, have been identified in Drosophila and are known to act on a single G-protein-coupled receptor (sNPFR). Several functions have been suggested for sNPFs in Drosophila, including the regulation of feeding and growth in larvae, the control of insulin signalling and the modulation of neuronal circuits in adult flies. Furthermore, sNPF has been shown to act as a nutritional state-dependent neuromodulator in the olfactory system. The role of sNPF in the larval nervous system is less well known. To analyse sites of action of sNPF in the larva, we mapped the distribution of sNPF- and sNPFR-expressing neurons. In particular, we studied circuits associated with chemosensory inputs and systems involved in the regulation of feeding, including neurosecretory cell systems and the hypocerebral ganglion. We employed a combination of immunocytochemistry and enhancer trap and promoter Gal4 lines to drive green fluorescent protein. We found a good match between the distribution of the receptor and its ligand. However, several differences between the larval and adult systems were observed. Thus, neither sNPF nor its receptor was found in the olfactory (or other sensory) systems in the larva and cells producing insulin-like peptides did not co-express sNPFR, as opposed to results from adults. Moreover, sNPF was expressed in a subpopulation of Hugin cells (second-order gustatory neurons) only in adult flies. We propose that the differences in sNPF signalling between the developmental stages is explained by differences in their feeding behaviour.
  •  
2.
  • Kolodziejczyk, Agata, et al. (författare)
  • A novel wide-field neuron with branches in the lamina of the Drosophila visual system expresses myoinhibitory peptide and may be associated with the clock
  • 2011
  • Ingår i: Cell and Tissue Research. - : Springer Science and Business Media LLC. - 0302-766X .- 1432-0878. ; 343:2, s. 357-369
  • Tidskriftsartikel (refereegranskat)abstract
    • Although neuropeptides are widespread throughout the central nervous system of the fruifly Drosophila, no records exist of peptidergic neurons in the first synaptic region of the visual system, the lamina. Here, we describe a novel type of neuron that has wide-field tangential arborizations just distal to the lamina neuropil and that expresses myoinhibitory peptide (MIP). The cell bodies of these neurons, designated lateral MIP-immunoreactive optic lobe (LMIo) neurons, lie anteriorly at the base of the medulla of the optic lobe. The LMIo neurons also arborize in several layers of the medulla and in the dorso-lateral and lateral protocerebrum. Since the LMIo resemble LN(v) clock neurons, we have investigated the relationships between these two sets of neurons by combining MIP-immunolabeling with markers for two of the clock genes, viz., Cryptochrome and Timeless, or with antisera to two peptides expressed in clock neurons, viz., pigment-dispersing factor and ion transport peptide. LMIo neurons do not co-express any of these clock neuron markers. However, branches of LMIo and clock neurons overlap in several regions. Furthermore, the varicose lamina branches of LMIo neurons superimpose those of two large bilateral serotonergic neurons. The close apposition of the terminations of MIP- and serotonin-producing neurons distal to the lamina suggests that they have the same peripheral targets. Our data indicate that the LMIo neurons are not bona fide clock neurons, but they may be associated with the clock system and regulate signaling peripherally in the visual system.
  •  
3.
  • Kolodziejczyk, Agata, et al. (författare)
  • Myoinhibitory peptide (MIP) immunoreactivity in the visual system of the blowfly Calliphora vomitoria in relation to putative clock neurons and serotonergic neurons
  • 2011
  • Ingår i: Cell and Tissue Research. - : Springer Science and Business Media LLC. - 0302-766X .- 1432-0878. ; 345:1, s. 125-135
  • Tidskriftsartikel (refereegranskat)abstract
    • A few types of peptidergic clock neurons have been identified in the fruitfly Drosophila, whereas in blowflies, only pigment-dispersing factor (PDF)-immunoreactive lateral ventral clock neurons (LNvs) have been described. In blowflies, but not Drosophila, a subset of these PDF-expressing neurons supplies axon branches to a region outside the synaptic layer of the lamina, the most peripheral optic lobe neuropil. In Drosophila, similar lamina processes are instead supplied by non-clock neurons (LMIo) that express myoinhibitory peptide (MIP). We have investigated the distribution of MIP-immunoreactive neurons in the visual system of the blowfly Calliphora vomitoria and found neurons resembling the three LMIos, but without processes to the lamina. In Calliphora, PDF-immunoreactive processes of LNvs in the lamina closely impinge on branching serotonin-immunoreactive axon terminations in the same region. We have also identified, in the blowfly, two types of putative clock neurons that label with an antiserum to ion-transport peptide (ITP). The presence of serotonin-immunoreactive neurons supplying processes to the lamina seems to be a conserved feature in dipteran flies. The morphology of the two types of ITP-immunoreactive clock neurons might also be conserved. However, peptidergic neurons with branches converging on the serotonin-immunoreactive neurons in the lamina are of different morphological types and express PDF in blowflies and MIP in Drosophila. The central circuitry of these PDF- and MIP-expressing neurons probably differs; consequently, whether their convergence on serotonergic neurons subserves similar functions in the two species is unclear.
  •  
4.
  • Nässel, Dick R., et al. (författare)
  • Hormonal axes in Drosophila : regulation of hormone release and multiplicity of actions
  • 2020
  • Ingår i: Cell and Tissue Research. - : Springer Science and Business Media LLC. - 0302-766X .- 1432-0878. ; 382:2, s. 233-266
  • Forskningsöversikt (refereegranskat)abstract
    • Hormones regulate development, as well as many vital processes in the daily life of an animal. Many of these hormones are peptides that act at a higher hierarchical level in the animal with roles as organizers that globally orchestrate metabolism, physiology and behavior. Peptide hormones can act on multiple peripheral targets and simultaneously convey basal states, such as metabolic status and sleep-awake or arousal across many central neuronal circuits. Thereby, they coordinate responses to changing internal and external environments. The activity of neurosecretory cells is controlled either by (1) cell autonomous sensors, or (2) by other neurons that relay signals from sensors in peripheral tissues and (3) by feedback from target cells. Thus, a hormonal signaling axis commonly comprises several components. In mammals and other vertebrates, several hormonal axes are known, such as the hypothalamic-pituitary-gonad axis or the hypothalamic-pituitary-thyroid axis that regulate reproduction and metabolism, respectively. It has been proposed that the basic organization of such hormonal axes is evolutionarily old and that cellular homologs of the hypothalamic-pituitary system can be found for instance in insects. To obtain an appreciation of the similarities between insect and vertebrate neurosecretory axes, we review the organization of neurosecretory cell systems in Drosophila. Our review outlines the major peptidergic hormonal pathways known in Drosophila and presents a set of schemes of hormonal axes and orchestrating peptidergic systems. The detailed organization of the larval and adult Drosophila neurosecretory systems displays only very basic similarities to those in other arthropods and vertebrates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (3)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (4)
Författare/redaktör
Kolodziejczyk, Agata (2)
Carlsson, Mikael A. (1)
Enell, Lina E. (1)
Zandawala, Meet (1)
Lärosäte
Stockholms universitet (4)
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy