SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0312 5963 ;lar1:(lu)"

Sökning: L773:0312 5963 > Lunds universitet

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björkman, S, et al. (författare)
  • Pharmacokinetics of coagulation factors: clinical relevance for patients with haemophilia
  • 2001
  • Ingår i: Clinical Pharmacokinetics. - 0312-5963. ; 40:11, s. 815-823
  • Forskningsöversikt (refereegranskat)abstract
    • Haemophilia is a recessively inherited coagulation disorder, in which an X-chromosome mutation causes a deficiency of either coagulation factor VIII (FVIII) in haemophilia A, or factor IX (FIX) in haemophilia B. Intravenous administration of FVIII or FIX can be used to control a bleeding episode, to provide haemostasis during surgery or for long term prophylaxis of bleeding. In special cases, activated factor VII (FVIIa) may be used instead of FVIII or FIX. The aim of this work is to review the pharmacokinetics of FVIII, FIX and FVIIa and to give an outline of the use of pharmacokinetics to optimise the treatment of patients with haemophilia. The pharmacokinetics of FVIII are well characterised. The systemic clearance (CL) of FVIII is largely determined by the plasma level of von Willebrand factor (vWF), which protects FVIII from degradation. Typical average CL in patients with normal vWF levels is 3 ml/h/kg, with an apparent volume of distribution at steady state (Vss) that slightly exceeds the plasma volume of the patient, and the average elimination half-life (t1/2) is around 14 hours. There are still some discrepancies in the literature on the pharmacokinetics of FIX. The average CL of plasma-derived FIX seems to be 4 ml/h/kg, the Vss is 3 to 4 times the plasma volume and the elimination t1/2 often exceeds 30 hours. FVIIa has a much higher CL (average of 33 ml/h/kg), and a short terminal t1/2 (at 2 to 3 hours). The Vss is 2 to 3 times the plasma volume. Since the therapeutic levels of coagulation factors are well defined in most clinical situations, applied pharmacokinetics is an excellent tool to optimise therapy. Individual tailoring of administration in prophylaxis has been shown to considerably increase the cost effectiveness of the treatment. Dosage regimens for the treatment of bleeding episodes or for haemostasis during surgery are also designed using pharmacokinetic data, and the advantages of using a constant infusion instead of repeated bolus doses have been explored. The influence of antibodies (inhibitors) on the pharmacokinetics of FVIII and FIX is in part understood, and the doses of coagulation factor needed to treat a patient can tentatively be calculated from the antibody titre. In conclusion, therapeutic monitoring of coagulation factor levels and the use of clinical pharmacokinetics to aid therapy are well established in the treatment of patients with haemophilia.
  •  
2.
  • Jones, AW, et al. (författare)
  • Magnitude and time-course of arterio-venous differences in blood-alcohol concentration in healthy men
  • 2004
  • Ingår i: Clinical Pharmacokinetics. - 0312-5963. ; 43:15, s. 1157-1166
  • Forskningsöversikt (refereegranskat)abstract
    • Background and objective: Human studies of arterio-venous (AV) differences in drug concentrations and the consequences for pharmacokinetic modelling and concentration-effect relationships are very limited. We therefore investigated the intravenous and intra-arterial concentrations of alcohol (ethanol) during the absorption, distribution and elimination stages of alcohol metabolism in healthy men. Study participants and methods: Nine male volunteers aged 26-67 years drank 0.6g alcohol/kg bodyweight in 2-15 minutes. The drink was prepared from 95% v/v alcohol, which was diluted with an alcohol-free. beverage to 20% v/v. Before the start of drinking and for 6-7 hours post-administration. blood samples were drawn at 15- to 20-minute intervals from indwelling catheters in a radial artery and a cubital vein on the same arm. The blood-alcohol concentration (BAC) was determined by headspace gas chromatography, and blood-water content was measured by desiccation. Results: The peak concentration (C-max) of alcohol in arterial blood was 0.98 g/L (SD 0.209) compared with 0.84 g,/L (SD 0.176) for venous blood (p < 0.001):, (t(max)) was the same (35 minutes). The AV whereas median time to reach C-max difference was greatest at 10 minutes after the end of drinking (mean 0.20 g/L [range 0.09-0.40 g/J), decreasing as the absorption of alcohol continued. At a C median time of 90 minutes post-administration (range 45-105 minutes), the, AV difference was momentarily zero. At later times. the AV differences became increasingly negative and at 280 n-minutes post-admistration the mean was -0.051 g/L (range -0.025 to -0.078 g/L). The slope of the post-absorptive phase g/L/h (SD 0.0167) for arterial blood compared with 0.109 g/L/h (k(0)) was 0.116 (SD 0.0185). for venous blood (p < 0.001). The extrapolated time to reach zero BAC was 391 minutes (SD 34) for arterial blood and 420 minutes (SD 41) for venous blood; the difference of 29 minutes was statistically highly significant (p < 0.001). The apparent volume of distribution of alcohol, the area under the concentration-time curves (AUC) and the water content of arterial and venous blood samples were not significantly different for the two sampling compartments. Conclusion: The arterial and venous blood-alcohol profiles were shifted in time owing to the time it takes for alcohol to equilibrate between arterial blood and tissue water. Alcohol is metabolised in the liver but not in muscle tissue, which acts as a reservoir for alcohol. The concentrations of alcohol in arterial and venous blood were the same at only one timepoint, which signifies complete equilibration of alcohol in total body water. During the entire post-absorptive phase, the concentration of alcohol in venous blood draining skeletal muscles was slightly greater than the arterial blood concentration; therefore, the AV differences were negative.
  •  
3.
  • Kuypers, Dirk R., et al. (författare)
  • Mycophenolic Acid Exposure after Administration of Mycophenolate Mofetil in the Presence and Absence of Ciclosporin in Renal Transplant Recipients
  • 2009
  • Ingår i: Clinical Pharmacokinetics. - 0312-5963. ; 48:5, s. 329-341
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and objective: The pharmacokinetics of mycophenolic acid (MPA) are complex, with large interindividual variability over time. There are also well documented interactions with ciclosporin, and assessment of MPA exposure is therefore necessary when reducing or stopping ciclosporin therapy. Here we report on the pharmacokinetic and pharmacodynamic behaviour of MPA in renal transplant patients on standard dose, reduced dose and no ciclosporin. Study design: The CAESAR study, a prospective 12-month study in primary renal allograft recipients, was designed to determine whether mycophenolate mofetil-based regimens containing either low-dose ciclosporin or low-dose ciclosporin withdrawn by 6 months could minimize nephrotoxicity and improve renal function without an increase in acute rejection compared with a mycophenolate mofetil-based regimen containing standard-dose ciclosporin. Patients and methods: A subset of patients from the CAESAR study contributed to this pharmacokinetic analysis of MPA exposure. Blood samples were taken over one dosing interval on day 7 and at months 3, 7 and 12 post-transplantation. The sampling timepoints were predose, 20, 40 and 75 minutes and 2, 3, 4, 6, 9 and 12 hours after mycophenolate mofetil dosing. Assessments included plasma concentrations of MPA and mycophenolic acid glucuronide (MPAG) and ciclosporin trough concentrations. The area under the plasma concentration-time curve (AUC) from 0 to 12 hours (AUC(12)) for MPA was the primary pharmacokinetic parameter, and the AUC12 for MPAG was the secondary parameter. Results: In total, 536 de novo renal allograft recipients were randomized in the CAESAR study. Of these, 114 patients were entered into the pharmacokinetic substudy and 110 patients contributed to the pharmacokinetic analysis. There was a rapid rise in MPA concentrations (median time to peak concentration 0.72-1.25 hours). At day 7 and month 3, the MPA AUC12 values were similar in the ciclosporin withdrawal and low-dose ciclosporin groups (patients with the same ciclosporin target concentrations to month 6), while at 7 and 12 months, the values in the ciclosporin withdrawal group were higher than in the low-dose group (19.9% and 30.2% higher, respectively). MPA AUC12 values in the standard-dose ciclosporin group were lower than in the other groups at all timepoints and increased over time. At all timepoints, the MPA peak plasma concentration was similar in all groups, and the MPAG concentrations rose more slowly than MPA concentrations. The ratio of the AUC from 6 to 12 hours/AUC(12) suggests that an increasing AUC in the ciclosporin withdrawal group is due to an increase in the enterohepatic recirculation. Conclusion: These findings are consistent with the hypothesis that ciclosporin inhibits the biliary secretion and/or hepatic extraction of MPAG, leading to a reduced rate of enterohepatic recirculation of MPA. Several concurrent mechanisms, such as ciclosporin-induced changes in renal tubular MPAG excretion and enhanced elimination of free MPA through competitive albumin binding with MPAG, can also contribute to the altered MPAG pharmacokinetics observed in the presence and absence of ciclosporin.
  •  
4.
  • Solms, Alexander, et al. (författare)
  • Favorable Pharmacokinetic Characteristics of Extended-Half-Life Recombinant Factor VIII BAY 94-9027 Enable Robust Individual Profiling Using a Population Pharmacokinetic Approach
  • 2020
  • Ingår i: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 59:5, s. 605-616
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Prophylaxis with factor VIII (FVIII) should be individualized based on patient characteristics, including FVIII pharmacokinetics. Population pharmacokinetic (popPK) modeling simplifies pharmacokinetic studies by obviating the need for multiple samples. Objective: The objective of this study was to characterize the pharmacokinetics and inter-individual variability (IIV) of BAY 94-9027 in relation to patient characteristics in support of a popPK-tailored approach, including identifying the optimal number and timing of pharmacokinetic samples. Methods: Pharmacokinetic samples from 198 males (aged 2‒62 years) with severe hemophilia A, enrolled in BAY 94-9027 clinical trials, were analyzed. Baseline age, height, weight, body mass index, lean body weight (LBW), von Willebrand factor (VWF) level, and race were evaluated. A popPK model was developed and used to simulate pharmacokinetic endpoints difficult to observe from measured FVIII levels, including time to maintain FVIII levels above 1, 3, and 5 IU/dL after different BAY 94-9027 doses. Results: A one-compartment model adequately described BAY 94-9027 pharmacokinetics. Clearance and central volume of distribution were significantly associated with LBW; clearance was inversely correlated with VWF. Due to the monophasic pharmacokinetics and well-understood IIV sources, identification of patient pharmacokinetics was achievable with sparse blood sampling. Median predicted time to maintain FVIII levels > 1 IU/dL in patients aged ≥ 12 years ranged from 120.1 to 127.2 h after single BAY 94-9027 doses of 45‒60 IU/kg. Conclusions: This analysis evaluated the pharmacokinetics of BAY 94-9027 and its sources of IIV. Using the model, determination of individual patient pharmacokinetics was possible with few FVIII samples, and a sparse sampling design to support pharmacokinetic-guided dosing was identified.
  •  
5.
  • Wu, Yunjiao, et al. (författare)
  • Pre- and Postnatal Maturation are Important for Fentanyl Exposure in Preterm and Term Newborns : A Pooled Population Pharmacokinetic Study
  • 2022
  • Ingår i: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 61:3, s. 401-412
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objective: Fentanyl is an opioid commonly used to prevent and treat severe pain in neonates; however, its use is off label and mostly based on bodyweight. Given the limited pharmacokinetic information across the entire neonatal age range, we characterized the pharmacokinetics of fentanyl across preterm and term neonates to individualize dosing. Methods: We pooled data from two previous studies on 164 newborns with a median gestational age of 29.0 weeks (range 23.9–42.3), birthweight of 1055 g (range 390–4245), and postnatal age (PNA) of 1 day (range 0–68). In total, 673 plasma samples upon bolus dosing (69 patients; median dose 2.1 μg/kg, median 2 boluses per patient) or continuous infusions (95 patients; median dose 1.1 μg/kg/h for 30 h) with and without boluses were used for population pharmacokinetic modeling in NONMEM® 7.4. Results: Clearance in neonates with birthweight of 2000 and 3000 g was 2.8- and 5.0-fold the clearance in a neonate with birthweight of 1000 g, respectively. Fentanyl clearance at PNA of 7, 14, and 21 days was 2.7-fold, 3.8-fold, and 4.6-fold the clearance at 1 day, respectively. Bodyweight-based dosing resulted in large differences in fentanyl concentrations. Depending on PNA and birthweight, fentanyl concentrations increased slowly after the start of therapy for both intermittent boluses and continuous infusion and reached a maximum concentration at 12–48 h. Conclusions: As both prenatal and postnatal maturation are important for fentanyl exposure, we propose a birthweight- and PNA-based dosage regimen. To provide rapid analgesia in the first 24 h of treatment, additional loading doses need to be considered.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy