SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0340 6245 ;lar1:(lnu)"

Sökning: L773:0340 6245 > Linnéuniversitetet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eriksson, Oskar, 1984-, et al. (författare)
  • Mannose-Binding Lectin is Associated with Thrombosis and Coagulopathy in Critically Ill COVID-19 Patients
  • 2020
  • Ingår i: Thrombosis and Haemostasis. - : Georg Thieme Verlag KG. - 0340-6245 .- 2567-689X. ; 120:12, s. 1720-1724
  • Tidskriftsartikel (refereegranskat)abstract
    • The ongoing COVID-19 pandemic has caused significant morbidity and mortality worldwide, as well as profound effects on society. COVID-19 patients have an increased risk of thromboembolic (TE) complications, which develop despite pharmacological thromboprophylaxis. The mechanism behind COVID-19-associated coagulopathy remains unclear. Mannose-binding lectin (MBL), a pattern recognition molecule that initiates the lectin pathway of complement activation, has been suggested as a potential amplifier of blood coagulation during thromboinflammation. Here we describe data from a cohort of critically ill COVID-19 patients ( n =65) treated at a tertiary hospital center intensive care unit (ICU). A subset of patients had strongly elevated MBL plasma levels, and activity upon ICU admission, and patients who developed symptomatic TE (14%) had significantly higher MBL levels than patients without TE. MBL was strongly correlated to plasma D-dimer levels, a marker of COVID-19 coagulopathy, but showed no relationship to degree of inflammation or other organ dysfunction. In conclusion, we have identified complement activation through the MBL pathway as a novel amplification mechanism that contributes to pathological thrombosis in critically ill COVID-19 patients. Pharmacological targeting of the MBL pathway could be a novel treatment option for thrombosis in COVID-19. Laboratory testing of MBL levels could be of value for identifying COVID-19 patients at risk for TE events.
  •  
2.
  • Grosso, Giorgia, et al. (författare)
  • The Complex Relationship between C4b-Binding Protein, Warfarin, and Antiphospholipid Antibodies
  • 2021
  • Ingår i: Thrombosis and Haemostasis. - : Georg Thieme Verlag KG. - 0340-6245 .- 2567-689X. ; 121:10, s. 1299-1309
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Low levels of total C4b-binding protein (C4BPt), a circulating inhibitor of the classical/lectin complement pathways, were observed in patients with antiphospholipid antibodies (aPLs) and during warfarin treatment. Objectives To investigate the associations between aPL and C4BPt in patients with persistently positive (++) aPL, with/without clinical manifestations and systemic lupus erythematosus (SLE), and in controls. Furthermore, we explored the impact of anticoagulation on C4BPt and in relation to complement activation. Methods In a cross-sectional design we investigated defined subgroups: primary (p) antiphospholipid syndrome (APS, N =67), aPL++ individuals without clinical manifestations (aPL carriers, N =15), SLE-aPL++ ( N =118, among them, secondary [s] APS, N =56), aPL negative (-) SLE (SLE-aPL-, N =291), and 322 controls. Clinical characteristics, including treatment, were tabulated. C4BPt was determined with a magnetic bead method. Complement proteins (C1q, C2, C3, C4, C3a, C3dg, sC5b-9, factor I [FI]) were measured. A mediation analysis was performed to decompose the total effect of aPL++ on C4BPt into the direct and indirect effects of aPL++ through warfarin. Results Overall, C4BPt is 20% decreased in aPL++ patients, regardless of SLE, APS, clinical manifestations, and aPL profile. C4BPt levels associate positively with complement proteins C1q, C2, C3, and C4, and negatively with complement activation product C3dg. In the SLE group, warfarin treatment contributes to approximately half of the C4BPt reduction (9%) Conclusion Both aPLs and warfarin are associated with C4BPt reduction. Complement activation in aPL++ patients may partly be explained by impaired inhibition through depressed C4BPt levels. Further studies are needed to understand the clinical implications.
  •  
3.
  • Hamad, Osama A., et al. (författare)
  • Contact activation of C3 enables tethering between activated platelets and polymorphonuclear leukocytes via CD11b/CD18
  • 2015
  • Ingår i: Thrombosis and Haemostasis. - 0340-6245 .- 2567-689X. ; 114:6, s. 1207-1217
  • Tidskriftsartikel (refereegranskat)abstract
    • Complement component C3 has a potential role in thrombotic pathologies. It is transformed, without proteolytic cleavage, into C3(H2O) upon binding to the surface of activated platelets. We hypothesise that C3(H2O) bound to activated platelets and to platelet-derived microparticles (PMPs) contributes to platelet-PMN complex (PPC) formation and to the binding of PMPs to PMNs. PAR-1 activation of platelets in human whole blood from normal individuals induced the formation of CD16(+)/CD42a(+) PPC. The complement inhibitor compstatin and a C5a receptor antagonist inhibited PPC formation by 50 %, while monoclonal antibodies to C3(H2O) or anti-CD11b inhibited PPC formation by 75-100 %. Using plasma protein-depleted blood and blood from a C3-deficient patient, we corroborated the dependence on C3, obtaining similar results after reconstitution with purified C3. By analogy with platelets, PMPs isolated from human serum were found to expose C3(H2O) and bind to PMNs. This interaction was also blocked by the anti-C3(H2O) and anti-CD11b monoclonal antibodies, indicating that C3(H2O) and CD11b are involved in tethering PMPs to PMNs. We confirmed the direct interaction between C3(H2O) and CD11b by quartz crystal microbalance analysis using purified native C3 and recombinant CD11b/CD18 and by flow cytometry using PMP and recombinant CD11b. Transfectants expressing CD11b/CD18 were also shown to specifically adhere to surface-bound C3(H2O). We have identified contact-activated C3(H2O) as a novel ligand for CD11b/CD18 that mediates PPC formation and the binding of PMPs to PMNs. Given the various roles of C3 in thrombotic reactions, this finding is likely to have important pathophysiological implications.
  •  
4.
  • Somajo, Sofia, et al. (författare)
  • Amino acid residues in the laminin G domains of protein S involved in tissue factor pathway inhibitor interaction
  • 2015
  • Ingår i: Thrombosis and Haemostasis. - : Georg Thieme Verlag KG. - 0340-6245 .- 2567-689X. ; 113:05, s. 976-987
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein S functions as a cofactor for tissue factor pathway inhibitor (TFPI) and activated protein C (APC). The sex hormone binding globulin (SHBG)-like region of protein S, consisting of two laminin G-like domains (LG1 and LG2), contains the binding site for C4b-binding protein (C4BP) and TFPI. Furthermore, the LG-domains are essential for the TFPI-cofactor function and for expression of full APC-cofactor function. The aim of the current study was to localise functionally important interaction sites in the protein S LG-domains using amino acid substitutions. Four protein S variants were created in which clusters of surface-exposed amino acid residues within the LG-domains were substituted. All variants bound normally to C4BP and were fully functional as cofactors for APC in plasma and in pure component assays. Two variants, SHBG2 (E612A, I614A, F265A, V393A, H453A), involving residues from both LG-domains, and SHBG3 (K317A, I330A, V336A, D365A) where residues in LG1 were substituted, showed 50–60 % reduction in enhancement of TFPI in FXa inhibition assays. For SHBG3 the decreased TFPI cofactor function was confirmed in plasma based thrombin generation assays. Both SHBG variants bound to TFPI with decreased affinity in surface plasmon resonance experiments. The TFPI Kunitz 3 domain is known to contain the interaction site for protein S. Using in silico analysis and protein docking exercises, preliminary models of the protein S SHBG/TFPI Kunitz domain 3 complex were created. Based on a combination of experimental and in silico data we propose a binding site for TFPI on protein S, involving both LGdomains.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy