SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0737 4038 OR L773:1537 1719 ;lar1:(kth)"

Search: L773:0737 4038 OR L773:1537 1719 > Royal Institute of Technology

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bidon, Tobias, et al. (author)
  • Brown and Polar Bear Y Chromosomes Reveal Extensive Male-Biased Gene Flow within Brother Lineages
  • 2014
  • In: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 31:6, s. 1353-1363
  • Journal article (peer-reviewed)abstract
    • Brown and polar bears have become prominent examples in phylogeography, but previous phylogeographic studies relied largely on maternally inherited mitochondrial DNA (mtDNA) or were geographically restricted. The male-specific Y chromosome, a natural counterpart to mtDNA, has remained underexplored. Although this paternally inherited chromosome is indispensable for comprehensive analyses of phylogeographic patterns, technical difficulties and low variability have hampered its application in most mammals. We developed 13 novel Y-chromosomal sequence and microsatellite markers from the polar bear genome and screened these in a broad geographic sample of 130 brown and polar bears. We also analyzed a 390-kb-long Y-chromosomal scaffold using sequencing data from published male ursine genomes. Y chromosome evidence support the emerging understanding that brown and polar bears started to diverge no later than the Middle Pleistocene. Contrary to mtDNA patterns, we found 1) brown and polar bears to be reciprocally monophyletic sister (or rather brother) lineages, without signals of introgression, 2) male-biased gene flow across continents and on phylogeographic time scales, and 3) male dispersal that links the Alaskan ABC islands population to mainland brown bears. Due to female philopatry, mtDNA provides a highly structured estimate of population differentiation, while male-biased gene flow is a homogenizing force for nuclear genetic variation. Our findings highlight the importance of analyzing both maternally and paternally inherited loci for a comprehensive view of phylogeographic history, and that mtDNA-based phylogeographic studies of many mammals should be reevaluated. Recent advances in sequencing technology render the analysis of Y-chromosomal variation feasible, even in nonmodel organisms.
  •  
2.
  • Eisfeldt, Jesper, et al. (author)
  • Discovery of Novel Sequences in 1,000 Swedish Genomes
  • 2020
  • In: Molecular biology and evolution. - : OXFORD UNIV PRESS. - 0737-4038 .- 1537-1719. ; 37:1, s. 18-30
  • Journal article (peer-reviewed)abstract
    • Novel sequences (NSs), not present in the human reference genome, are abundant and remain largely unexplored. Here, we utilize de novo assembly to study NS in 1,000 Swedish individuals first sequenced as part of the SweGen project revealing a total of 46 Mb in 61,044 distinct contigs of sequences not present in GRCh38. The contigs were aligned to recently published catalogs of Icelandic and Pan-African NSs, as well as the chimpanzee genome, revealing a great diversity of shared sequences. Analyzing the positioning of NS across the chimpanzee genome, we find that 2,807 NS align confidently within 143 chimpanzee orthologs of human genes. Aligning the whole genome sequencing data to the chimpanzee genome, we discover ancestral NS common throughout the Swedish population. The NSs were searched for repeats and repeat elements: revealing a majority of repetitive sequence (56%), and enrichment of simple repeats (28%) and satellites (15%). Lastly, we align the unmappable reads of a subset of the thousand genomes data to our collection of NS, as well as the previously published Pan-African NS: revealing that both the Swedish and Pan-African NS are widespread, and that the Swedish NSs are largely a subset of the Pan-African NS. Overall, these results highlight the importance of creating a more diverse reference genome and illustrate that significant amounts of the NS may be of ancestral origin.
  •  
3.
  • Gallus, S., et al. (author)
  • Evolutionary histories of transposable elements in the genome of the largest living marsupial carnivore, the tasmanian devil
  • 2015
  • In: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 32:5, s. 1268-1283
  • Journal article (peer-reviewed)abstract
    • The largest living carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii), is the sole survivor of a lineage originating about 12 Ma. We set out to investigate the spectrum of transposable elements found in the Tasmanian devil genome, the first high-coverage genome of an Australian marsupial. Marsupial genomes have been shown to have the highest amount of transposable elements among vertebrates. We analyzed the horizontally transmitted DNA transposons OC1 and hAT-1-MEu in the Tasmanian devil genome. OC1 is present in all carnivorous marsupials, while having a very limited distribution among the remaining Australian marsupial orders. In contrast, hAT-1-MEu is present in all Australian marsupial orders, and has so far only been identified in a few placental mammals. We screened 158 introns for phylogenetically informative retrotransposons in the order Dasyuromorphia, and found that the youngest SINE (Short INterspersed Element), WSINE1, is no longer active in the subfamily Dasyuridae. The lack of detectable WSINE1 activity in this group may be due to a retrotransposon inactivation event approximately 30 Ma. We found that the Tasmanian devil genome contains a relatively low number of continuous full-length LINE-1 (Long INterspersed Element 1, L1) retrotransposons compared with the opossum genome. Furthermore, all L1 elements in the Tasmanian devil appeared to be nonfunctional. Hidden Markov Model approaches suggested that other potential sources of functional reverse transcriptase are absent from the genome. We discuss the issues associated with assembling long, highly similar L1 copies from short read Illumina data and describe how assembly artifacts can potentially lead to erroneous conclusions.
  •  
4.
  • Hollich, V., et al. (author)
  • Assessment of protein distance measures and tree-building methods for phylogenetic tree reconstruction
  • 2005
  • In: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 22:11, s. 2257-2264
  • Journal article (peer-reviewed)abstract
    • Distance-based methods are popular for reconstructing evolutionary trees of protein sequences, mainly because of their speed and generality. A number of variants of the classical neighbor-joining (NJ) algorithm have been proposed, as well as a number of methods to estimate protein distances. We here present a large-scale assessment of performance in reconstructing the correct tree topology for the most popular algorithms. The programs BIONJ, FastME, Weighbor, and standard NJ were run using 12 distance estimators, producing 48 tree-building/distance estimation method combinations. These were evaluated on a test set based on real trees taken from 100 Pfam families. Each tree was used to generate multiple sequence alignments with the ROSE program using three evolutionary models. The accuracy of each method was analyzed as a function of both sequence divergence and location in the tree. We found that BIONJ produced the overall best results, although the average accuracy differed little between the tree-building methods (normally less than 1%). A noticeable trend was that FastME performed poorer than the rest on long branches. Weighbor was several orders of magnitude slower than the other programs. Larger differences were observed when using different distance estimators. Protein-adapted Jukes-Cantor and Kimura distance correction produced clearly poorer results than the other methods, even worse than uncorrected distances. We also assessed the recently developed Scoredist measure, which performed equally well as more complex methods.
  •  
5.
  • Li, Wu Lue, et al. (author)
  • Multiple Origins and Genomic Basis of Complex Traits in Sighthounds
  • 2023
  • In: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 40:8
  • Journal article (peer-reviewed)abstract
    • Sighthounds, a distinctive group of hounds comprising numerous breeds, have their origins rooted in ancient artificial selection of dogs. In this study, we performed genome sequencing for 123 sighthounds, including one breed from Africa, six breeds from Europe, two breeds from Russia, and four breeds and 12 village dogs from the Middle East. We gathered public genome data of five sighthounds and 98 other dogs as well as 31 gray wolves to pinpoint the origin and genes influencing the morphology of the sighthound genome. Population genomic analysis suggested that sighthounds originated from native dogs independently and were comprehensively admixed among breeds, supporting the multiple origins hypothesis of sighthounds. An additional 67 published ancient wolf genomes were added for gene flow detection. Results showed dramatic admixture of ancient wolves in African sighthounds, even more than with modern wolves. Whole-genome scan analysis identified 17 positively selected genes (PSGs) in the African population, 27 PSGs in the European population, and 54 PSGs in the Middle Eastern population. None of the PSGs overlapped in the three populations. Pooled PSGs of the three populations were significantly enriched in "regulation of release of sequestered calcium ion into cytosol"(gene ontology: 0051279), which is related to blood circulation and heart contraction. In addition, ESR1, JAK2, ADRB1, PRKCE, and CAMK2D were under positive selection in all three selected groups. This suggests that different PSGs in the same pathway contributed to the similar phenotype of sighthounds. We identified an ESR1 mutation (chr1: g.42,177,149-T > C) in the transcription factor (TF) binding site of Stat5a and a JAK2 mutation (chr1: g.93,277,007-T > A) in the TF binding site of Sox5. Functional experiments confirmed that the ESR1 and JAK2 mutation reduced their expression. Our results provide new insights into the domestication history and genomic basis of sighthounds.
  •  
6.
  • Pang, Jun-Feng, et al. (author)
  • mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves.
  • 2009
  • In: Molecular biology and evolution. - : Oxford University Press (OUP). - 1537-1719 .- 0737-4038. ; 26:12, s. 2849-64
  • Journal article (peer-reviewed)abstract
    • There is no generally accepted picture of where, when, and how the domestic dog originated. Previous studies of mitochondrial DNA (mtDNA) have failed to establish the time and precise place of origin because of lack of phylogenetic resolution in the so far studied control region (CR), and inadequate sampling. We therefore analyzed entire mitochondrial genomes for 169 dogs to obtain maximal phylogenetic resolution and the CR for 1,543 dogs across the Old World for a comprehensive picture of geographical diversity. Hereby, a detailed picture of the origins of the dog can for the first time be suggested. We obtained evidence that the dog has a single origin in time and space and an estimation of the time of origin, number of founders, and approximate region, which also gives potential clues about the human culture involved. The analyses showed that dogs universally share a common homogenous gene pool containing 10 major haplogroups. However, the full range of genetic diversity, all 10 haplogroups, was found only in southeastern Asia south of Yangtze River, and diversity decreased following a gradient across Eurasia, through seven haplogroups in Central China and five in North China and Southwest (SW)Asia, down to only four haplogroups in Europe. The mean sequence distance to ancestral haplotypes indicates an origin 5,400-16,300 years ago (ya) from at least 51 female wolf founders. These results indicate that the domestic dog originated in southern China less than 16,300 ya, from several hundred wolves. The place and time coincide approximately with the origin of rice agriculture, suggesting that the dogs may have originated among sedentary hunter-gatherers or early farmers, and the numerous founders indicate that wolf taming was an important culture trait.
  •  
7.
  • Savolainen, Peter, et al. (author)
  • mtDNA tandem repeats in domestic dogs and wolves : Mutation mechanism studied by analysis of the sequence of imperfect repeats
  • 2000
  • In: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 17:4, s. 474-488
  • Journal article (peer-reviewed)abstract
    • The mitochondrial (mt) DNA control region (CR) of dogs and wolves contains an array of imperfect 10 bp tandem repeats. This region was studied for 14 domestic dogs representing the four major phylogenetic groups of nonrepetitive CR and for 5 wolves. Three repeat types were found among these individuals, distributed so that different sequences of the repeat types were formed in different molecules. This enabled a detailed study of the arrays and of the mutation events that they undergo. Extensive heteroplasmy was observed in all individuals; 85 different array types were found in one individual, and the total number of types was estimated at 384. Among unrelated individuals, no identical molecules were found, indicating a high rate of evolution of the region. By performing a pedigree analysis, array types which had been inherited from mother to offspring and array types which were the result of somatic mutations, respectively, could be identified, showing that about 20% of the molecules within an individual had somatic mutations. By direct pairwise comparison of the mutated and the original array types, the physiognomy of the inserted or deleted elements (indels) and the approximate positions of the mutations could be determined. All mutations could be explained by replication slippage or point mutations. The majority of the indels were 1-5 repeats long, but deletions of up to 17 repeats were found. Mutations were found in all parts of the arrays, but at a higher frequency in the 5' end. Furthermore, the inherited array types within the mother-offspring pair were aligned and compared so that germ line mutations could be studied. The pattern of the germ line mutations was approximately the same as that of the somatic mutations.
  •  
8.
  • Ullah, Ikram, 1984-, et al. (author)
  • Species tree inference using a mixture model
  • 2015
  • In: Molecular biology and evolution. - Oxford : Oxford University Press. - 0737-4038 .- 1537-1719.
  • Journal article (peer-reviewed)abstract
    • Species tree reconstruction has been a subject of substantial research due to its central role across biology and medicine. A species tree is often reconstructed using a set of gene trees or by directly using sequence data. In either of these cases, one of the main confounding phenomena is the discordance between a species tree and a gene tree due to evolutionary events such as duplications and losses. Probabilistic methods can resolve the discordance by co-estimating gene trees and the species tree but this approach poses a scalability problem for larger data sets.We present MixTreEM-DLRS: a two-phase approach for reconstructing a species tree in the presence of gene duplications and losses. In the first phase, MixTreEM, a novel structural EM algorithm based on a mixture model is used to reconstruct a set of candidate species trees, given sequence data for monocopy gene families from the genomes under study. In the second phase, PrIME-DLRS, a method based on the DLRS model ( ̊Akerborg et al., 2009), is used for selecting the best species tree. PrIME-DLRS can handle multicopy gene families since DLRS, apart from modeling sequence evolution, models gene duplication and loss using a gene evolution model (Arvestad et al., 2009).We evaluate MixTreEM-DLRS using synthetic and biological data, and compare its performance to a recent genome-scale species tree reconstruction method PHYLDOG (Boussau et al., 2013) as well as to a fast parsimony-based algorithm Duptree (Wehe et al., 2008). Our method is competitive with PHYLDOG in terms of accuracy and runs significantly faster and our method outperforms Duptree in accuracy. The analysis constituted by MixTreEM without DLRS may also be used for selecting the target species tree, yielding a fast and yet accurate algorithm for larger data sets. MixTreEM is freely available at http://prime.scilifelab.se/mixtreem.
  •  
9.
  • Wang, Shi Zhi, et al. (author)
  • Historic dog Furs Unravel the Origin and Artificial Selection of Modern Nordic Lapphund and Elkhound dog Breeds
  • 2024
  • In: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 41:7
  • Journal article (peer-reviewed)abstract
    • The origins and extreme morphological evolution of the modern dog breeds are poorly studied because the founder populations are extinct. Here, we analyse eight 100 to 200 years old dog fur samples obtained from traditional North Swedish clothing, to explore the origin and artificial selection of the modern Nordic Lapphund and Elkhound dog breeds. Population genomic analysis confirmed the Lapphund and Elkhound breeds to originate from the local dog population, and showed a distinct decrease in genetic diversity in agreement with intense breeding. We identified eleven genes under positive selection during the breed development. In particular, the MSRB3 gene, associated with breed-related ear morphology, was selected in all Lapphund and Elkhound breeds, and functional assays showed that a SNP mutation in the 3′UTR region suppresses its expression through miRNA regulation. Our findings demonstrate analysis of near-modern dog artifacts as an effective tool for interpreting the origin and artificial selection of the modern dog breeds.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view