SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0737 4038 OR L773:1537 1719 ;mspu:(article);pers:(Scofield Douglas 1966)"

Search: L773:0737 4038 OR L773:1537 1719 > Journal article > Scofield Douglas 1966

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Horvath, Robert, et al. (author)
  • Selection on Accessible Chromatin Regions in Capsella grandiflora
  • 2021
  • In: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 38:12, s. 5563-5575
  • Journal article (peer-reviewed)abstract
    • Accurate estimates of genome-wide rates and fitness effects of new mutations are essential for an improved understanding of molecular evolutionary processes. Although eukaryotic genomes generally contain a large noncoding fraction, functional noncoding regions and fitness effects of mutations in such regions are still incompletely characterized. A promising approach to characterize functional noncoding regions relies on identifying accessible chromatin regions (ACRs) tightly associated with regulatory DNA. Here, we applied this approach to identify and estimate selection on ACRs in Capsella grandiflora, a crucifer species ideal for population genomic quantification of selection due to its favorable population demography. We describe a population-wide ACR distribution based on ATAC-seq data for leaf samples of 16 individuals from a natural population. We use population genomic methods to estimate fitness effects and proportions of positively selected fixations (alpha) in ACRs and find that intergenic ACRs harbor a considerable fraction of weakly deleterious new mutations, as well as a significantly higher proportion of strongly deleterious mutations than comparable inaccessible intergenic regions. ACRs are enriched for expression quantitative trait loci (eQTL) and depleted of transposable element insertions, as expected if intergenic ACRs are under selection because they harbor regulatory regions. By integrating empirical identification of intergenic ACRs with analyses of eQTL and population genomic analyses of selection, we demonstrate that intergenic regulatory regions are an important source of nearly neutral mutations. These results improve our understanding of selection on noncoding regions and the role of nearly neutral mutations for evolutionary processes in outcrossing Brassicaceae species.
  •  
2.
  • Kaufmann, Philipp, et al. (author)
  • Y-Linked Copy Number Polymorphism of Target of Rapamycin Is Associated with Sexual Size Dimorphism in Seed Beetles
  • 2023
  • In: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 40:8
  • Journal article (peer-reviewed)abstract
    • The Y chromosome is theorized to facilitate evolution of sexual dimorphism by accumulating sexually antagonistic loci, but empirical support is scarce. Due to the lack of recombination, Y chromosomes are prone to degenerative processes, which poses a constraint on their adaptive potential. Yet, in the seed beetle, Callosobruchus maculatus segregating Y linked variation affects male body size and thereby sexual size dimorphism (SSD). Here, we assemble C. maculatus sex chromosome sequences and identify molecular differences associated with Y-linked SSD variation. The assembled Y chromosome is largely euchromatic and contains over 400 genes, many of which are ampliconic with a mixed autosomal and X chromosome ancestry. Functional annotation suggests that the Y chromosome plays important roles in males beyond primary reproductive functions. Crucially, we find that, besides an autosomal copy of the gene target of rapamycin (TOR), males carry an additional TOR copy on the Y chromosome. TOR is a conserved regulator of growth across taxa, and our results suggest that a Y-linked TOR provides a male specific opportunity to alter body size. A comparison of Y haplotypes associated with male size difference uncovers a copy number variation for TOR, where the haplotype associated with decreased male size, and thereby increased sexual dimorphism, has two additional TOR copies. This suggests that sexual conflict over growth has been mitigated by autosome to Y translocation of TOR followed by gene duplications. Our results reveal that despite of suppressed recombination, the Y chromosome can harbor adaptive potential as a male-limited supergene.
  •  
3.
  • Lynch, Michael, et al. (author)
  • The evolution of transcription-initiation sites
  • 2005
  • In: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 22:4, s. 1137-1146
  • Journal article (peer-reviewed)abstract
    • Unlike the situation in prokaryotes, most eukaryotic messenger RNAs contain a moderately long 5′ untranslated region (UTR). Such leader sequences impose a burden on eukaryotic genes by providing substrate for the mutational origin of premature translation-initiation codons, which generally result in defective proteins. To gain an insight into the expansion of 5′ UTRs in eukaryotic genomes, we present a simple null model in which the evolution of transcription-initiation sites is entirely driven by the stochastic mutational flux of core-promoter sequences and premature translation-initiation codons. This model yields results consistent with a variety of heretofore disconnected observations, including the form of length distributions of 5′ UTRs, the relatively low variance in UTR features among distantly related eukaryotes, the universal reliance on relatively simple core-promoter sequences, and the elevated density of introns in the 5′ UTR. We suggest that the reduced effective population sizes of most eukaryotes impose a population-genetic environment conducive to the movement of core promoters to random positions, subject to the constraint imposed by the upstream accumulation of premature translation-initiation codons. If this hypothesis is correct, then selection for gene-specific regulatory features need not be invoked to explain either the origin of lengthy eukaryotic 5′ UTRs or the 1,000-fold range of 5′-UTR lengths among genes within species. Nevertheless, once permanently established, expanded 5′ UTRs may have provided a novel substrate for the evolution of mechanisms for posttranscriptional regulation of eukaryotic gene expression. These results provide a further example of how an increase in the power of random genetic drift can passively promote the evolution of forms of gene architecture that ultimately facilitate the evolution of organismal complexity.
  •  
4.
  • Schlebusch, Carina, 1977-, et al. (author)
  • Khoe-San Genomes Reveal Unique Variation and Confirm the Deepest Population Divergence in Homo sapiens
  • 2020
  • In: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 37:10, s. 2944-2954
  • Journal article (peer-reviewed)abstract
    • The southern African indigenous Khoe-San populations harbor the most divergent lineages of all living peoples. Exploring their genomes is key to understanding deep human history. We sequenced 25 full genomes from five Khoe-San populations, revealing many novel variants, that 25% of variants are unique to the Khoe-San, and that the Khoe-San group harbors the greatest level of diversity across the globe. In line with previous studies, we found several gene regions with extreme values in genome-wide scans for selection, potentially caused by natural selection in the lineage leading to Homo sapiens and more recent in time. These gene regions included immunity-, sperm-, brain-, diet-, and muscle-related genes. When accounting for recent admixture, all Khoe-San groups display genetic diversity approaching the levels in other African groups and a reduction in effective population size starting around 100,000 years ago. Hence, all human groups show a reduction in effective population size commencing around the time of the Out-of-Africa migrations, which coincides with changes in the paleoclimate records, changes that potentially impacted all humans at the time.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view