SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0737 4038 OR L773:1537 1719 ;pers:(Arnason Ulfur)"

Sökning: L773:0737 4038 OR L773:1537 1719 > Arnason Ulfur

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kullberg, Morgan, et al. (författare)
  • Housekeeping genes for phylogenetic analysis of eutherian relationships
  • 2006
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 23:8, s. 1493-1503
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular relationship of placental mammals has attracted great interest in recent years. However, 2 crucial and conflicting hypotheses remain, one with respect to the position of the root of the eutherian tree and the other the relationship between the orders Rodentia, Lagomorpha (rabbits, hares), and Primates. Although most mitochondrial (mt) analyses have suggested that rodents have a basal position in the eutherian tree, some nuclear data in combination with mt-rRNA genes have placed the root on the so-called African clade or on a branch that includes this clade and the Xenarthra (e.g., anteater and armadillo). In order to generate a new and independent set of molecular data for phylogenetic analysis, we have established cDNA sequences from different tissues of various mammalian species. With this in mind, we have identified and sequenced 8 housekeeping genes with moderately fast rate of evolution from 22 placental mammals, representing I I orders. In order to determine the root of the eutherian tree, the same genes were also sequenced for 3 marsupial species, which were used as outgroup. Inconsistent with the analyses of nuclear + mt-rRNA gene data, the current data set did not favor a basal position of the African clade or Xenarthra in the eutherian tree. Similarly, by joining rodents and lagomorphs on the same basal branch (Glires hypothesis), the data set is also inconsistent with the tree commonly favored in mtDNA analyses. The analyses of the currently established sequences have helped examination of problematic parts in the eutherian tree at the same time as they caution against suggestions that have claimed that basal eutherian relationships have been conclusively settled.
  •  
2.
  • Slack, Kerryn, et al. (författare)
  • Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution
  • 2006
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 23:6, s. 1144-1155
  • Tidskriftsartikel (refereegranskat)abstract
    • Testing models of macroevolution, and especially the sufficiency of microevolutionary processes, requires good collaboration between molecular biologists and paleontologists. We report such a test for events around the Late Cretaceous by describing the earliest penguin fossils, analyzing complete mitochondrial genomes from an albatross, a petrel, and a loon, and describe the gradual decline of pterosaurs at the same time modern birds radiate. The penguin fossils comprise four naturally associated skeletons from the New Zealand Waipara Greensand, a Paleocene (early Tertiary) formation just above a well-known Cretaceous/Tertiary boundary site. The fossils, in a new genus (Waimanu), provide a lower estimate of 61-62 Ma for the divergence between penguins and other birds and thus establish a reliable calibration point for avian evolution. Combining fossil calibration points, DNA sequences, maximum likelihood, and Bayesian analysis, the penguin calibrations imply a radiation of modern (crown group) birds in the Late Cretaceous. This includes a conservative estimate that modern sea and shorebird lineages diverged at least by the Late Cretaceous about 74 +/- 3 Ma (Campanian). It is clear that modern birds from at least the latest Cretaceous lived at the same time as archaic birds including Hesperornis, Ichthyornis, and the diverse Enantiornithiformes. Pterosaurs, which also coexisted with early crown birds, show notable changes through the Late Cretaceous. There was a decrease in taxonomic diversity, and small- to medium-sized species disappeared well before the end of the Cretaceous. A simple reading of the fossil record might suggest competitive interactions with birds, but much more needs to be understood about pterosaur life histories. Additional fossils and molecular data are still required to help understand the role of biotic interactions in the evolution of Late Cretaceous birds and thus to test that the mechanisms of microevolution are sufficient to explain macroevolution.
  •  
3.
  • Wolf, Magnus, et al. (författare)
  • Genomic Impact of Whaling in North Atlantic Fin Whales
  • 2022
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 39:5
  • Tidskriftsartikel (refereegranskat)abstract
    • It is generally recognized that large-scale whaling in the 19th and 20th century led to a substantial reduction of the size of many cetacean populations, particularly those of the baleen whales (Mysticeti). The impact of these operations on genomic diversity of one of the most hunted whales, the fin whale (Balaenoptera physalus), has remained largely unaddressed because of the paucity of adequate samples and the limitation of applicable techniques. Here, we have examined the effect of whaling on the North Atlantic fin whale based on genomes of 51 individuals from Icelandic waters, representing three temporally separated intervals, 1989, 2009 and 2018 and provide a reference genome for the species. Demographic models suggest a noticeable drop of the effective population size of the North Atlantic fin whale around a century ago. The present results suggest that the genome-wide heterozygosity is not markedly reduced and has remained comparable with other baleen whale species. Similarly, there are no signs of apparent inbreeding, as measured by the proportion of long runs of homozygosity, or of a distinctively increased mutational load, as measured by the amount of putative deleterious mutations. Compared with other baleen whales, the North Atlantic fin whale appears to be less affected by anthropogenic influences than other whales such as the North Atlantic right whale, consistent with the presence of long runs of homozygosity and higher levels of mutational load in an otherwise more heterozygous genome. Thus, genome-wide assessments of other species and populations are essential for future, more specific, conservation efforts.
  •  
4.
  • Madsen, O, et al. (författare)
  • Molecular evolution of the mammalian alpha 2B adrenergic receptor
  • 2002
  • Ingår i: Molecular biology and evolution. - 0737-4038. ; 19:12, s. 2150-2160
  • Tidskriftsartikel (refereegranskat)abstract
    • The alpha 2B adrenergic receptor (A2AB) is a heptahelical G protein-coupled receptor for catecholamines. We compared the almost complete coding region (about 1,175 bp) of the A2AB gene from 48 mammalian species, including eight newly determined sequences, representing all the 18 eutherian and two marsupial orders. Comparison of the encoded proteins reveals that residues thought to be involved in agonist binding are highly conserved, as are the regions playing a role in G protein-coupling. The three extracellular loops are generally more variable than the transmembrane domains and two of the intracellular loops, indicating a lower functional constraint. However, the greatest variation is observed in the very long, third intracellular loop, where only a few residues and a polyglutamyl tract are preserved. Although this polyglutamyl domain displays a great variation in length, its presence in all described A2ABs confirms its proposed role in agonist-dependent phosphorylation of the third intracellular loop. Phylogenetic analyses of the A2AB data set, including Bayesian methods, recognized the superordinal clades Afrotheria, Laurasiatheria, and Euarchontoglires, in agreement with recent molecular evidence, albeit with lower support. Within Afrotheria, A2AB strongly supports the paenungulate clade and the association of the continental African otter shrew with Malagasy tenrecs. Among Laurasiatheria, A2AB confirms the nesting of whales within the artiodactyls, as a sister group to hippopotamus. Within the Euarchontoglires, there is constant support for rodent monophyly.
  •  
5.
  • Moum, T, et al. (författare)
  • Mitochondrial DNA sequence evolution and phylogeny of the Atlantic Alcidae, including the extinct great auk (Pinguinus impennis)
  • 2002
  • Ingår i: Molecular biology and evolution. - 0737-4038. ; 19:9, s. 1434-1439
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atlantic auk assemblage includes four extant species, razorbill (Alca torda), dovekie (Alle alle), common murre (Uria aalge), and thick-billed murre (U. lomvia), and one recently extinct species, the flightless great auk (Pinguinus impennis). To determine the phylogenetic relationships among the species, a contiguous 4.2-kb region of the mitochondrial genome from the extant species was amplified using PCR. This region included one ribosomal RNA gene, four transfer RNA genes, two protein-coding genes, the control region, and intergenic spacers. Sets of PCR primers for amplifying the same region from great auk were designed from sequences of the extant species. The authenticity of the great auk sequence was ascertained by alternative amplifications, cloning, and separate analyses in an independent laboratory. Phylogenetic analyses of the entire assemblage, made possible by the great auk sequence, fully resolved the phylogenetic relationships and split it into two primary lineages, Uria versus Alle, Alca, and Pinguinus. A sister group relationship was identified between Alca and Pinguinus to the exclusion of Alle. Phylogenetically, the flightless great auk originated late relative to other divergences within the assemblage. This suggests that three highly divergent species in terms of adaptive specializations, Alca, Alle, and Pinguinus, evolved from a single lineage in the Atlantic Ocean, in a process similar to the initial adaptive radiation of alcids in the Pacific Ocean.
  •  
6.
  • Xu, Xiufeng, et al. (författare)
  • The complete mitochondrial DNA sequence of the greater Indian rhinoceros, Rhinoceros unicornis, and the phylogenetic relationship among Carnivora, Perissodactyla and Artiodactyla (plus Cetacea)
  • 1996
  • Ingår i: Molecular biology and evolution. - 0737-4038. ; 13:9, s. 1167-1173
  • Tidskriftsartikel (refereegranskat)abstract
    • The sequence (16,829 nt) of the complete mitochondrial genome of the greater Indian rhinoceros, Rhinoceros unicornis, was determined. Like other perissodactyls studied (horse and donkey) the rhinoceros demonstrates length variation (heteroplasmy) associated with different numbers of repetitive motifs in the control region. The 16,829-nt variety of the molecule includes 36 identical control region motifs. The evolution of individual peptide-coding genes was examined by comparison with a distantly related perissodactyl, the horse, and the relationships among the orders Carnivora, Perissodactyla, and Artiodactyla (+ Cetacea) were examined on the basis of concatenated sequences of 12 mitochondrial peptide-coding genes. The phylogenetic analyses grouped Carnivora, Perissodactyla, and Artiodactyla (+ Cetacea) into a superordinal clade and within this clade a sister group relationship was recognized between Carnivora and Perissodactyla to the exclusion of Artiodactyla (+ Cetacea). On the basis of the molecular difference between the rhinoceros and the horse and by applying as a reference the Artiodactyl/Cetacean divergence set at 60 million years ago (MYA), the evolutionary divergence between the families Rhinocerotidae and Equidae was dated to approximate to 50 MYA.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy