SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0737 4038 OR L773:1537 1719 ;pers:(Blomberg Anders 1956)"

Sökning: L773:0737 4038 OR L773:1537 1719 > Blomberg Anders 1956

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ibstedt, Sebastian, 1983, et al. (författare)
  • Concerted Evolution of Life Stage Performances Signals Recent Selection on Yeast Nitrogen Use.
  • 2015
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 1537-1719 .- 0737-4038. ; 32:1, s. 153-161
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposing natural selection driving phenotypic and genotypic adaptive differentiation is an extraordinary challenge. Given that an organism's life stages are exposed to the same environmental variations, we reasoned that fitness components, such as the lag, rate, and efficiency of growth, directly reflecting performance in these life stages, should often be selected in concert. We therefore conjectured that correlations between fitness components over natural isolates, in a particular environmental context, would constitute a robust signal of recent selection. Critically, this test for selection requires fitness components to be determined by different genetic loci. To explore our conjecture, we exhaustively evaluated the lag, rate, and efficiency of asexual population growth of natural isolates of the model yeast Saccharomyces cerevisiae in a large variety of nitrogen-limited environments. Overall, fitness components were well correlated under nitrogen restriction. Yeast isolates were further crossed in all pairwise combinations and coinheritance of each fitness component and genetic markers were traced. Trait variations tended to map to quantitative trait loci (QTL) that were private to a single fitness component. We further traced QTLs down to single-nucleotide resolution and uncovered loss-of-function mutations in RIM15, PUT4, DAL1, and DAL4 as the genetic basis for nitrogen source use variations. Effects of SNPs were unique for a single fitness component, strongly arguing against pleiotropy between lag, rate, and efficiency of reproduction under nitrogen restriction. The strong correlations between life stage performances that cannot be explained by pleiotropy compellingly support adaptive differentiation of yeast nitrogen source use and suggest a generic approach for detecting selection.
  •  
2.
  • Zörgö, Enikö, 1968, et al. (författare)
  • Life History Shapes Trait Heredity by Accumulation of Loss-of-Function Alleles in Yeast.
  • 2012
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 1537-1719 .- 0737-4038. ; 29:7, s. 1781-1789
  • Tidskriftsartikel (refereegranskat)abstract
    • A fundamental question in biology is whether variation in organisms primarily emerges as a function of adaptation or as a function of neutral genetic drift. Trait variation in the model organism baker's yeast follows population bottlenecks rather than environmental boundaries suggesting that it primarily results from genetic drift. Based on the yeast life history, we hypothesized that population-specific loss-of-function mutations emerging in genes recently released from selection is the predominant cause of trait variation within the species. As retention of one functional copy of a gene in diploid yeasts is typically sufficient to maintain completely unperturbed performance, we also conjectured that a crossing of natural yeasts from populations with different loss-of-function mutations would provide a further efficient test bed for this hypothesis. Charting the first species-wide map of trait inheritance in a eukaryotic organism, we found trait heredity to be strongly biased toward diploid hybrid performance exactly mimicking the performance of the best of the parents, as expected given a complete dominance of functional over nonfunctional alleles. Best parent heterosis, partial dominance, and negative nonadditivity were all rare phenomena. Nonadditive inheritance was observed primarily in crosses involving at least one very poor performing parent, most frequently of the West African population, and when molecularly dissected, loss-of-function alleles were identified as the underlying cause. These findings provide support for that population-specific loss-of-function mutations do have a strong impact on genotype-phenotype maps and underscores the role of neutral genetic drift as a driver for trait variation within species.
  •  
3.
  • Nunez, Joaquin C B, et al. (författare)
  • Ecological load and balancing selection in circumboreal barnacles.
  • 2021
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 1537-1719. ; 38:2, s. 676-685
  • Tidskriftsartikel (refereegranskat)abstract
    • Acorn barnacle adults experience environmental heterogeneity at various spatial scales of their circumboreal habitat, raising the question of how adaptation to high environmental variability is maintained in the face of strong juvenile dispersal and mortality. Here we show that 4% of genes in the barnacle genome experience balancing selection across the entire range of the species. Many of these genes harbor mutations maintained across 2 million years of evolution between the Pacific and Atlantic oceans. These genes are involved in ion regulation, pain reception, and heat tolerance, functions which are essential in highly variable ecosystems. The data also reveal complex population structure within and between basins, driven by the trans-Arctic interchange and the last glaciation. Divergence between Atlantic and Pacific populations is high, foreshadowing the onset of allopatric speciation, and suggesting that balancing selection is strong enough to maintain functional variation for millions of years in the face of complex demography.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy