SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0962 1083 OR L773:1365 294X ;hsvcat:3"

Sökning: L773:0962 1083 OR L773:1365 294X > Medicin och hälsovetenskap

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Johnsson, Martin, et al. (författare)
  • The role of pleiotropy and linkage in genes affecting a sexual ornament and bone allocation in the chicken.
  • 2014
  • Ingår i: Molecular ecology. - : Wiley. - 1365-294X .- 0962-1083. ; 23:9, s. 2275-86
  • Tidskriftsartikel (refereegranskat)abstract
    • Sexual selection and the ornaments that inform such choices have been extensively studied, particularly from a phenotypic perspective. Although more is being revealed about the genetic architecture of sexual ornaments, much still remains to be discovered. The comb of the chicken is one of the most widely recognized sexual ornaments, which has been shown to be correlated with both fecundity and bone allocation. In this study, we use a combination of multiple intercrosses between White Leghorn populations and wild-derived Red Junglefowl to, first, map quantitative trait loci (QTL) for bone allocation and, second, to identify expression QTL that correlate and colocalize with comb mass. These candidate quantitative genes were then assessed for potential pleiotropic effects on bone tissue and fecundity traits. We identify genes that correlate with both relative comb mass and bone traits suggesting a combination of both pleiotropy and linkage mediates gene regulatory variation in these traits.
  •  
2.
  • Ahlstrom, Christina A., et al. (författare)
  • Satellite tracking of gulls and genomic characterization of faecal bacteria reveals environmentally mediated acquisition and dispersal of antimicrobial-resistant Escherichia coli on the Kenai Peninsula, Alaska
  • 2019
  • Ingår i: Molecular Ecology. - : WILEY. - 0962-1083 .- 1365-294X. ; 28:10, s. 2531-2545
  • Tidskriftsartikel (refereegranskat)abstract
    • Gulls (Larus spp.) have frequently been reported to carry Escherichia coli exhibiting antimicrobial resistance (AMR E. coli); however, the pathways governing the acquisition and dispersal of such bacteria are not well described. We equipped 17 landfill-foraging gulls with satellite transmitters and collected gull faecal samples longitudinally from four locations on the Kenai Peninsula, Alaska to assess: (a) gull attendance and transitions between sites, (b) spatiotemporal prevalence of faecally shed AMR E. coli, and (c) genomic relatedness of AMR E. coli isolates among sites. We also sampled Pacific salmon (Oncorhynchus spp.) harvested as part of personal-use dipnet fisheries at two sites to assess potential contamination with AMR E. coli. Among our study sites, marked gulls most commonly occupied the lower Kenai River (61% of site locations) followed by the Soldotna landfill (11%), lower Kasilof River (5%) and upper Kenai River (<1%). Gulls primarily moved between the Soldotna landfill and the lower Kenai River (94% of transitions among sites), which were also the two locations with the highest prevalence of AMR E. coli. There was relatively high spatial and temporal variability in AMR E. coli prevalence in gull faeces and there was no evidence of contamination on salmon harvested in personal-use fisheries. We identified E. coli sequence types and AMR genes of clinical importance, with some isolates possessing genes associated with resistance to as many as eight antibiotic classes. Our findings suggest that gulls acquire AMR E. coli at habitats with anthropogenic inputs and subsequent movements may represent pathways through which AMR is dispersed.
  •  
3.
  • Huang, Yun, et al. (författare)
  • Transcriptome profiling of immune tissues reveals habitat-specific gene expression between lake and river sticklebacks
  • 2016
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 25:4, s. 943-958
  • Tidskriftsartikel (refereegranskat)abstract
    • The observation of habitat-specific phenotypes suggests the action of natural selection. The three-spined stickleback (Gasterosteus aculeatus) has repeatedly colonized and adapted to diverse freshwater habitats across the northern hemisphere since the last glaciation, while giving rise to recurring phenotypes associated with specific habitats. Parapatric lake and river populations of sticklebacks harbour distinct parasite communities, a factor proposed to contribute to adaptive differentiation between these ecotypes. However, little is known about the transcriptional response to the distinct parasite pressure of those fish in a natural setting. Here, we sampled wild-caught sticklebacks across four geographical locations from lake and river habitats differing in their parasite load. We compared gene expression profiles between lake and river populations using 77 whole-transcriptome libraries from two immune-relevant tissues, the head kidney and the spleen. Differential expression analyses revealed 139 genes with habitat-specific expression patterns across the sampled population pairs. Among the 139 differentially expressed genes, eight are annotated with an immune function and 42 have been identified as differentially expressed in previous experimental studies in which fish have been immune challenged. Together, these findings reinforce the hypothesis that parasites contribute to adaptation of sticklebacks in lake and river habitats.
  •  
4.
  • Jacquet, S., et al. (författare)
  • Colonization of the Mediterranean basin by the vector biting midge species Culicoides imicola : an old story
  • 2015
  • Ingår i: Molecular Ecology. - : Wiley-Blackwell. - 0962-1083 .- 1365-294X. ; 24:22, s. 5707-5725
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the demographic history and genetic make-up of colonizing species is critical for inferring population sources and colonization routes. This is of main interest for designing accurate control measures in areas newly colonized by vector species of economically important pathogens. The biting midge Culicoides imicola is a major vector of orbiviruses to livestock. Historically, the distribution of this species was limited to the Afrotropical region. Entomological surveys first revealed the presence of C. imicola in the south of the Mediterranean basin by the 1970s. Following recurrent reports of massive bluetongue outbreaks since the 1990s, the presence of the species was confirmed in northern areas. In this study, we addressed the chronology and processes of C. imicola colonization in the Mediterranean basin. We characterized the genetic structure of its populations across Mediterranean and African regions using both mitochondrial and nuclear markers, and combined phylogeographical analyses with population genetics and approximate Bayesian computation. We found a west/east genetic differentiation between populations, occurring both within Africa and within the Mediterranean basin. We demonstrated that three of these groups had experienced demographic expansions in the Pleistocene, probably because of climate changes during this period. Finally, we showed that C. imicola could have colonized the Mediterranean basin in the Late Pleistocene or Early Holocene through a single event of introduction; however, we cannot exclude the hypothesis involving two routes of colonization. Thus, the recent bluetongue outbreaks are not linked to C. imicola colonization event, but rather to biological changes in the vector or the virus.
  •  
5.
  • Jerney, Jacqueline, et al. (författare)
  • Seasonal genotype dynamics of a marine dinoflagellate : Pelagic populations are homogeneous and as diverse as benthic seed banks
  • 2021
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic diversity is the basis for evolutionary adaptation and selection under changing environmental conditions. Phytoplankton populations are genotypically diverse, can become genetically differentiated within small spatiotemporal scales and many species form resting stages. Resting stage accumulations in sediments (seed banks) are expected to serve as reservoirs for genetic information, but so far their role in maintaining phytoplankton diversity and in evolution has remained unclear. In this study we used the toxic dinoflagellate Alexandrium ostenfeldii (Dinophyceae) as a model organism to investigate if (i) the benthic seed bank is more diverse than the pelagic population and (ii) the pelagic population is seasonally differentiated. Resting stages (benthic) and plankton (pelagic) samples were collected at a coastal bloom site in the Baltic Sea, followed by cell isolation and genotyping using microsatellite markers (MS) and restriction site associated DNA sequencing (RAD). High clonal diversity (98%–100%) combined with intermediate to low gene diversity (0.58–0.03, depending on the marker) was found. Surprisingly, the benthic and pelagic fractions of the population were equally diverse, and the pelagic fraction was temporally homogeneous, despite seasonal fluctuation of environmental selection pressures. The results of this study suggest that continuous benthic–pelagic coupling, combined with frequent sexual reproduction, as indicated by persistent linkage equilibrium, prevent the dominance of single clonal lineages in a dynamic environment. Both processes harmonize the pelagic with the benthic population and thus prevent seasonal population differentiation. At the same time, frequent sexual reproduction and benthic–pelagic coupling maintain high clonal diversity in both habitats.
  •  
6.
  • Moser, K. A., et al. (författare)
  • Describing the current status of Plasmodium falciparum population structure and drug resistance within mainland Tanzania using molecular inversion probes
  • 2021
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 30:1, s. 100-113
  • Tidskriftsartikel (refereegranskat)abstract
    • High-throughput Plasmodium genomic data is increasingly useful in assessing prevalence of clinically important mutations and malaria transmission patterns. Understanding parasite diversity is important for identification of specific human or parasite populations that can be targeted by control programmes, and to monitor the spread of mutations associated with drug resistance. An up-to-date understanding of regional parasite population dynamics is also critical to monitor the impact of control efforts. However, this data is largely absent from high-burden nations in Africa, and to date, no such analysis has been conducted for malaria parasites in Tanzania countrywide. To this end, over 1,000 P. falciparum clinical isolates were collected in 2017 from 13 sites in seven administrative regions across Tanzania, and parasites were genotyped at 1,800 variable positions genome-wide using molecular inversion probes. Population structure was detectable among Tanzanian P. falciparum parasites, approximately separating parasites from the northern and southern districts and identifying genetically admixed populations in the north. Isolates from nearby districts were more likely to be genetically related compared to parasites sampled from more distant districts. Known drug resistance mutations were seen at increased frequency in northern districts (including two infections carrying pfk13-R561H), and additional variants with undetermined significance for antimalarial resistance also varied by geography. Malaria Indicator Survey (2017) data corresponded with genetic findings, including average region-level complexity-of-infection and malaria prevalence estimates. The parasite populations identified here provide important information on extant spatial patterns of genetic diversity of Tanzanian parasites, to which future surveys of genetic relatedness can be compared. © 2020 John Wiley & Sons Ltd
  •  
7.
  • Norte, Ana Cláudia, et al. (författare)
  • Host dispersal shapes the population structure of a tick-borne bacterial pathogen
  • 2020
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 29:3, s. 485-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Birds are hosts for several zoonotic pathogens. Because of their high mobility, especially of longdistance migrants, birds can disperse these pathogens, affecting their distribution and phylogeography. We focused on Borrelia burgdorferi sensu lato, which includes the causative agents of Lyme borreliosis, as an example for tick-borne pathogens, to address the role of birds as propagation hosts of zoonotic agents at a large geographical scale. We collected ticks from passerine birds in 11 European countries. B. burgdorferi s.l. prevalence in Ixodes spp. was 37% and increased with latitude. The fieldfare Turdus pilaris and the blackbird T. merula carried ticks with the highest Borrelia prevalence (92 and 58%, respectively), whereas robin Erithacus rubecula ticks were the least infected (3.8%). Borrelia garinii was the most prevalent genospecies (61%), followed by B. valaisiana (24%), B. afzelii (9%), B. turdi (5%) and B. lusitaniae (0.5%). A novel Borrelia genospecies “Candidatus Borrelia aligera” was also detected. Multilocus sequence typing (MLST) analysis of B. garinii isolates together with the global collection of B. garinii genotypes obtained from the Borrelia MLST public database revealed that: (a) there was little overlap among genotypes from different continents, (b) there was no geographical structuring within Europe, and (c) there was no evident association pattern detectable among B. garinii genotypes from ticks feeding on birds, questing ticks or human isolates. These findings strengthen the hypothesis that the population structure and evolutionary biology of tick-borne pathogens are shaped by their host associations and the movement patterns of these hosts.
  •  
8.
  • Wille, Michelle, et al. (författare)
  • No evidence for homosubtypic immunity of influenza H3 in Mallards following vaccination in a natural experimental system
  • 2017
  • Ingår i: Molecular Ecology. - : Wiley-Blackwell. - 0962-1083 .- 1365-294X. ; 26:5, s. 1420-1431
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mallard (Anas platyrhynchos) is an important reservoir species for influenza A viruses (IAV), and in this host, prevalence and virus diversity are high. Studies have demonstrated the presence of homosubtypic immunity, where individuals are unlikely to be reinfected with the same subtype within an autumn season. Further, evidence for heterosubtypic immunity exists, whereby immune responses specific for one subtype offer partial or complete protection against related HA subtypes. We utilized a natural experimental system to determine whether homo- or heterospecific immunity could be induced following experimental vaccination. Thirty Mallards were vaccinated with an inactivated H3, H6 or a sham vaccine and after seroconversion were exposed to naturally infected wild conspecifics. All ducks were infected within 2days and had both primary and secondary infections. Overall, there was no observable difference between groups; all individuals were infected with H3 and H10 IAV. At the cessation of the experiment, most individuals had anti-NP antibodies and neutralizing antibodies against H10. Not all individuals had H3 neutralizing antibodies. The isolated H3 IAVs revealed genetic dissimilarity to the H3 vaccine strain, specifically substitutions in the vicinity of the receptor-binding site. There was no evidence of vaccine-induced homosubtypic immunity to H3, a likely result of both a poor H3 immune response in the ducks and H3 immune escape. Likewise, there was no observed heterosubtypic protection related to H6 vaccination. This study highlights the need for experimental approaches to assess how exposure to pathogens and resulting immune processes translates to individual and population disease dynamics.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy