SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0962 1083 OR L773:1365 294X ;pers:(Bahram Mohammad)"

Search: L773:0962 1083 OR L773:1365 294X > Bahram Mohammad

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Tedersoo, Leho, et al. (author)
  • Spatial structure and the effects of host and soil environments on communities of ectomycorrhizal fungi in wooded savannas and rain forests of Continental Africa and Madagascar
  • 2011
  • In: Molecular Ecology. - 0962-1083 .- 1365-294X. ; 20:14, s. 3071-3080
  • Journal article (peer-reviewed)abstract
    • Mycorrhizal fungi play a key role in mineral nutrition of terrestrial plants, but the factors affecting natural distribution, diversity and community composition of particularly tropical fungi remain poorly understood. This study addresses shifts in community structure and species frequency of ectomycorrhizal (EcM) fungi in relation to host taxa, soil depth and spatial structure in four contrasting African ecosystems. We used the rDNA and plastid trnL intron sequence analysis for identification of fungi and host plants, respectively. By partitioning out spatial autocorrelation in plant and fungal distribution, we suggest that African EcM fungal communities are little structured by soil horizon and host at the plant species and family levels. These findings contrast with patterns of vegetation in these forests and EcM fungal communities in other tropical and temperate ecosystems. The low level of host preference indirectly supports an earlier hypothesis that pioneer Phyllanthaceae may facilitate the establishment of late successional Fabaceae and potentially other EcM host trees by providing compatible fungal inoculum in deforested and naturally disturbed ecosystems of tropical Africa.
  •  
2.
  • Tedersoo, Leho, et al. (author)
  • Towards global patterns in the diversity and community structure of ectomycorrhizal fungi.
  • 2012
  • In: Molecular Ecology. - 0962-1083 .- 1365-294X. ; 21:17, s. 4160-70
  • Journal article (peer-reviewed)abstract
    • Global species richness patterns of soil micro-organisms remain poorly understood compared to macro-organisms. We use a global analysis to disentangle the global determinants of diversity and community composition for ectomycorrhizal (EcM) fungi-microbial symbionts that play key roles in plant nutrition in most temperate and many tropical forest ecosystems. Host plant family has the strongest effect on the phylogenetic community composition of fungi, whereas temperature and precipitation mostly affect EcM fungal richness that peaks in the temperate and boreal forest biomes, contrasting with latitudinal patterns of macro-organisms. Tropical ecosystems experience rapid turnover of organic material and have weak soil stratification, suggesting that poor habitat conditions may contribute to the relatively low richness of EcM fungi, and perhaps other soil biota, in most tropical ecosystems. For EcM fungi, greater evolutionary age and larger total area of EcM host vegetation may also contribute to the higher diversity in temperate ecosystems. Our results provide useful biogeographic and ecological hypotheses for explaining the distribution of fungi that remain to be tested by involving next-generation sequencing techniques and relevant soil metadata.
  •  
3.
  • Bahram, Mohammad (author)
  • Seasonal dynamics of mycoplankton in the Yellow Sea reflect the combined effect of riverine inputs and hydrographic conditions
  • 2021
  • In: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 30, s. 3624-3637
  • Journal article (peer-reviewed)abstract
    • Little is known about how multiple factors including land-based inputs and ocean currents affect the spatiotemporal distribution of the mycoplankton in coastal regions. To explore the seasonal changes of mycoplanktonic communities and potential environmental drivers, we collected water samples from the Yellow Sea, used here as a model for subtropical sea habitats, in different seasons over two years. Compared with winter and spring, summer exhibited higher levels of fungal richness and community heterogeneity in the water column. The seasonal shifts in mycoplankton diversity and community composition were mainly ascribed to freshwater inputs, the Cold Water Mass and invasion of the Yellow Sea Warm Current. Among the physicochemical variables tested, temperature was the primary determinant of fungal diversity and showed contrasting influences on fungal richness in the surface and bottom waters during summer. In addition, we provide evidence for the community similarity and dissolved nutrients of different water bodies to highlight the potential origin of the Cold Water Mass. Our findings bring new understanding on the factors determining the dynamics of mycoplankton communities by modelling the influence of physicochemical variables and tracking the geographical distribution of certain fungal taxa.
  •  
4.
  • Hiiesalu, Indrek, et al. (author)
  • Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats
  • 2017
  • In: Molecular Ecology. - : John Wiley & Sons. - 0962-1083 .- 1365-294X. ; 26:18, s. 4846-4858
  • Journal article (peer-reviewed)abstract
    • Fungi have important roles as decomposers, mycorrhizal root symbionts and pathogens in forest ecosystems, but there is limited information about their diversity and composition at the landscape scale. This work aimed to disentangle the factors underlying fungal richness and composition along the landscape-scale moisture, organic matter and productivity gradients. Using high-throughput sequencing, we identified soil fungi from 54 low-productivity Pinus sylvestris-dominated plots across three study areas in Estonia and determined the main predictors of fungal richness based on edaphic, floristic and spatial variables. Fungal richness displayed unimodal relationship with organic matter and deduced soil moisture. Plant richness and productivity constituted the key predictors for taxonomic richness of functional guilds. Composition of fungi and the main ectomycorrhizal fungal lineages and hyphal exploration types was segregated by moisture availability and soil nitrogen. We conclude that plant productivity and diversity determine the richness and proportion of most functional groups of soil fungi in low-productive pine forests on a landscape scale. Adjacent stands of pine forest may differ greatly in the dominance of functional guilds that have marked effects on soil carbon and nitrogen cycling in these forest ecosystems.
  •  
5.
  • Johansson, Veronika A., et al. (author)
  • Specificity of fungal associations of Pyroleae and Monotropa hypopitys during germination and seedling development
  • 2017
  • In: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 26:9, s. 2591-2604
  • Journal article (peer-reviewed)abstract
    • Mycoheterotrophic plants obtain organic carbon from associated mycorrhizal fungi, fully or partially. Angiosperms with this form of nutrition possess exceptionally small 'dust seeds' which after germination develop 'seedlings' that remain subterranean for several years, fully dependent on fungi for supply of carbon. Mycoheterotrophs which as adults have photosynthesis thus develop from full to partial mycoheterotrophy, or autotrophy, during ontogeny. Mycoheterotrophic plants may represent a gradient of variation in a parasitism-mutualism continuum, both among and within species. Previous studies on plant-fungal associations in mycoheterotrophs have focused on either germination or the adult life stages of the plant. Much less is known about the fungal associations during development of the subterranean seedlings. We investigated germination and seedling development and the diversity of fungi associated with germinating seeds and subterranean seedlings (juveniles) in five Monotropoideae (Ericaceae) species, the full mycoheterotroph Monotropa hypopitys and the putatively partial mycoheterotrophs Pyrola chlorantha, P. rotundifolia, Moneses uniflora and Chimaphila umbellata. Seedlings retrieved from seed sowing experiments in the field were used to examine diversity of fungal associates, using pyrosequencing analysis of ITS2 region for fungal identification. The investigated species varied with regard to germination, seedling development and diversity of associated fungi during juvenile ontogeny. Results suggest that fungal host specificity increases during juvenile ontogeny, most pronounced in the fully mycoheterotrophic species, but a narrowing of fungal associates was found also in two partially mycoheterotrophic species. We suggest that variation in specificity of associated fungi during seedling ontogeny in mycoheterotrophs represents ongoing evolution along a parasitism-mutualism continuum.
  •  
6.
  • Kohout, Petr, et al. (author)
  • Niche partitioning in arbuscular mycorrhizal communities in temperate grasslands : a lesson from adjacent serpentine and nonserpentine habitats
  • 2015
  • In: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 24:8, s. 1831-1843
  • Journal article (peer-reviewed)abstract
    • Arbuscular mycorrhizal fungi (AMF) represent an important soil microbial group playing a fundamental role in many terrestrial ecosystems. We explored the effects of deterministic (soil characteristics, host plant life stage, neighbouring plant communities) and stochastic processes on AMF colonization, richness and community composition in roots of Knautia arvensis(Dipsacaceae) plants from three serpentine grasslands and adjacent nonserpentine sites. Methodically, the study was based on 454-sequencing of the ITS region of rDNA. In total, we detected 81 molecular taxonomical operational units (MOTUs) belonging to the Glomeromycota. Serpentine character of the site negatively influenced AMF root colonization, similarly as higher Fe concentration. AMF MOTUs richness linearly increased along a pH gradient from 3.5 to 5.8. Contrary, K and Cr soil concentration had a negative influence on AMF MOTUs richness. We also detected a strong relation between neighbouring plant community composition and AMF MOTUs richness. Although spatial distance between the sampled sites (c. 0.3–3 km) contributed to structuring AMF communities in K. arvensis roots, environmental parameters were key factors in this respect. In particular, the composition of AMF communities was shaped by the complex of serpentine conditions, pH and available soil Ni concentration. The composition of AMF communities was also dependent on host plant life stage (vegetative vs. generative). Our study supports the dominance of deterministic factors in structuring AMF communities in heterogeneous environment composed of an edaphic mosaic of serpentine and nonserpentine soils.
  •  
7.
  • Kõljalg, Urmas, et al. (author)
  • Towards a unified paradigm for sequence-based identification of fungi.
  • 2013
  • In: Molecular ecology. - : Wiley. - 1365-294X .- 0962-1083. ; 22:21, s. 5271-7
  • Journal article (peer-reviewed)abstract
    • The nuclear ribosomal internal transcribed spacer (ITS) region is the formal fungal barcode and in most cases the marker of choice for the exploration of fungal diversity in environmental samples. Two problems are particularly acute in the pursuit of satisfactory taxonomic assignment of newly generated ITS sequences: (i) the lack of an inclusive, reliable public reference data set and (ii) the lack of means to refer to fungal species, for which no Latin name is available in a standardized stable way. Here, we report on progress in these regards through further development of the UNITE database (http://unite.ut.ee) for molecular identification of fungi. All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type (e.g. Hymenoscyphus pseudoalbidus|GU586904|SH133781.05FU), and their taxonomic and ecological annotations were corrected as far as possible through a distributed, third-party annotation effort. We introduce the term 'species hypothesis' (SH) for the taxa discovered in clustering on different similarity thresholds (97-99%). An automatically or manually designated sequence is chosen to represent each such SH. These reference sequences are released (http://unite.ut.ee/repository.php) for use by the scientific community in, for example, local sequence similarity searches and in the QIIME pipeline. The system and the data will be updated automatically as the number of public fungal ITS sequences grows. We invite everybody in the position to improve the annotation or metadata associated with their particular fungal lineages of expertise to do so through the new Web-based sequence management system in UNITE.
  •  
8.
  • Mundra, Sunil, et al. (author)
  • Temporal variation of Bistorta vivipara-associated ectomycorrhizal fungal communities in the High Arctic
  • 2015
  • In: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 24:24, s. 6289-6302
  • Journal article (peer-reviewed)abstract
    • Ectomycorrhizal (ECM) fungi are important for efficient nutrient uptake of several widespread arctic plant species. Knowledge of temporal variation of ECM fungi, and the relationship of these patterns to environmental variables, is essential to understand energy and nutrient cycling in Arctic ecosystems. We sampled roots of Bistorta vivipara ten times over two years; three times during the growing-season (June, July and September) and twice during winter (November and April) of both years. We found 668 ECM OTUs belonging to 25 different ECM lineages, whereof 157 OTUs persisted throughout all sampling time-points. Overall, ECM fungal richness peaked in winter and species belonging to Cortinarius, Serendipita and Sebacina were more frequent in winter than during summer. Structure of ECM fungal communities was primarily affected by spatial factors. However, after accounting for spatial effects, significant seasonal variation was evident revealing correspondence with seasonal changes in environmental conditions. We demonstrate that arctic ECM richness and community structure differ between summer (growing-season) and winter, possibly due to reduced activity of the core community, and addition of fungi adapted for winter conditions forming a winter-active fungal community. Significant month 3 year interactions were observed both for fungal richness and community composition, indicating unpredictable between-year variation. Our study indicates that addressing seasonal changes requires replication over several years.
  •  
9.
  • Tedersoo, Leho, et al. (author)
  • Global biogeography of the ectomycorrhizal/sebacina lineage (Fungi, Sebacinales) as revealed from comparative phylogenetic analyses
  • 2014
  • In: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 23:16, s. 4168-4183
  • Journal article (peer-reviewed)abstract
    • Compared with plants and animals, large-scale biogeographic patterns of microbes including fungi are poorly understood. By the use of a comparative phylogenetic approach and ancestral state reconstructions, we addressed the global biogeography, rate of evolution and evolutionary origin of the widely distributed ectomycorrhizal (EcM) /sebacina lineage that forms a large proportion of the Sebacinales order. We downloaded all publicly available internal transcribed spacer (ITS) sequences and metadata and supplemented sequence information from three genes to construct dated phylogenies and test biogeographic hypotheses. The /sebacina lineage evolved 45-57Myr ago that groups it with relatively young EcM taxa in other studies. The most parsimonious origin for /sebacina is inferred to be North American temperate coniferous forests. Among biogeographic traits, region and biome exhibited stronger phylogenetic signal than host family. Consistent with the resource availability (environmental energy) hypothesis, the ITS region is evolving at a faster rate in tropical than nontropical regions. Most biogeographic regions exhibited substantial phylogenetic clustering suggesting a strong impact of dispersal limitation over a large geographic scale. In northern Holarctic regions, however, phylogenetic distances and phylogenetic grouping of isolates indicate multiple recent dispersal events.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view