SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1067 5027 OR L773:1527 974X ;lar1:(su)"

Sökning: L773:1067 5027 OR L773:1527 974X > Stockholms universitet

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kougia, Vasiliki, et al. (författare)
  • RTEX : A novel framework for ranking, tagging, and explanatory diagnostic captioning of radiography exams
  • 2021
  • Ingår i: JAMIA Journal of the American Medical Informatics Association. - : Oxford University Press (OUP). - 1067-5027 .- 1527-974X. ; 28:8, s. 1651-1659
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The study sought to assist practitioners in identifying and prioritizing radiography exams that are more likely to contain abnormalities, and provide them with a diagnosis in order to manage heavy workload more efficiently (eg, during a pandemic) or avoid mistakes due to tiredness.Materials and MethodsThis article introduces RTEx, a novel framework for (1) ranking radiography exams based on their probability to be abnormal, (2) generating abnormality tags for abnormal exams, and (3) providing a diagnostic explanation in natural language for each abnormal exam. Our framework consists of deep learning and retrieval methods and is assessed on 2 publicly available datasets.Results: For ranking, RTEx outperforms its competitors in terms of nDCG@k. The tagging component outperforms 2 strong competitor methods in terms of F1. Moreover, the diagnostic captioning component, which exploits the predicted tags to constrain the captioning process, outperforms 4 captioning competitors with respect to clinical precision and recall.Discussion: RTEx prioritizes abnormal exams toward the improvement of the healthcare workflow by introducing a ranking method. Also, for each abnormal radiography exam RTEx generates a set of abnormality tags alongside a diagnostic text to explain the tags and guide the medical expert. Human evaluation of the produced text shows that employing the generated tags offers consistency to the clinical correctness and that the sentences of each text have high clinical accuracy.Conclusions: This is the first framework that successfully combines 3 tasks: ranking, tagging, and diagnostic captioning with focus on radiography exams that contain abnormalities.
  •  
2.
  • Low, Yen S., et al. (författare)
  • Cheminformatics-aided pharmacovigilance : application to Stevens-Johnson Syndrome
  • 2016
  • Ingår i: JAMIA Journal of the American Medical Informatics Association. - : Oxford University Press (OUP). - 1067-5027 .- 1527-974X. ; 23:5, s. 968-978
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Quantitative Structure-Activity Relationship (QSAR) models can predict adverse drug reactions (ADRs), and thus provide early warnings of potential hazards. Timely identification of potential safety concerns could protect patients and aid early diagnosis of ADRs among the exposed. Our objective was to determine whether global spontaneous reporting patterns might allow chemical substructures associated with Stevens-Johnson Syndrome (SJS) to be identified and utilized for ADR prediction by QSAR models. Materials and Methods Using a reference set of 364 drugs having positive or negative reporting correlations with SJS in the VigiBase global repository of individual case safety reports (Uppsala Monitoring Center, Uppsala, Sweden), chemical descriptors were computed from drug molecular structures. Random Forest and Support Vector Machines methods were used to develop QSAR models, which were validated by external 5-fold cross validation. Models were employed for virtual screening of DrugBank to predict SJS actives and inactives, which were corroborated using knowledge bases like VigiBase, ChemoText, and MicroMedex (Truven Health Analytics Inc, Ann Arbor, Michigan). Results We developed QSAR models that could accurately predict if drugs were associated with SJS (area under the curve of 75%-81%). Our 10 most active and inactive predictions were substantiated by SJS reports (or lack thereof) in the literature. Discussion Interpretation of QSAR models in terms of significant chemical descriptors suggested novel SJS structural alerts. Conclusions We have demonstrated that QSAR models can accurately identify SJS active and inactive drugs. Requiring chemical structures only, QSAR models provide effective computational means to flag potentially harmful drugs for subsequent targeted surveillance and pharmacoepidemiologic investigations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy