SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1070 664X OR L773:1089 7674 ;pers:(Brenning Nils)"

Sökning: L773:1070 664X OR L773:1089 7674 > Brenning Nils

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brenning, Nils, et al. (författare)
  • Alfven's critical ionization velocity observed in high power impulse magnetron sputtering discharges
  • 2012
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 19:9, s. 093505-
  • Tidskriftsartikel (refereegranskat)abstract
    • Azimuthally rotating dense plasma structures, spokes, have recently been detected in several high power impulse magnetron sputtering (HiPIMS) devices used for thin film deposition and surface treatment, and are thought to be important for plasma buildup, energizing of electrons, as well as cross-B transport of charged particles. In this work, the drift velocities of these spokes are shown to be strongly correlated with the critical ionization velocity, CIV, proposed by Alfven. It is proposed as the most promising approach in combining the CIV and HiPIMS research fields is to focus on the role of spokes in the process of electron energization.
  •  
2.
  • Brenning, Nils, et al. (författare)
  • Conditions for plasmoid penetration across abrupt magnetic barriers
  • 2005
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The penetration of plasma clouds, or plasmoids, across abrupt magnetic barriers (of the scale less than a few ion gyro radii, using the plasmoid directed velocity) is studied. The insight gained earlier, from detailed experimental and computer simulation investigations of a case study, is generalized into other parameter regimes. It is concluded for what parameters a plasi-noid should be expected to penetrate the magnetic barrier through self-polarization, penetrate through magnetic expulsion, or be rejected from the barrier. The scaling parameters are n(e), upsilon(o), B-perpendicular to, m(i), T-i, and the width w of the plasmoid. The scaling is based on a model for strongly driven, nonlinear magnetic field diffusion into a plasma which is a generalization of the earlier laboratory findings. The results are applied to experiments earlier reported in the literature, and also to the proposed application of impulsive penetration of plasmoids from the solar wind into the Earth's magnetosphere.
  •  
3.
  • Gudmundsson, Jon Tomas, 1965-, et al. (författare)
  • Are the argon metastables important in high power impulse magnetron sputtering discharges?
  • 2015
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 22:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We use an ionization region model to explore the ionization processes in the high power impulse magnetron sputtering (HiPIMS) discharge in argon with a titanium target. In conventional dc magnetron sputtering (dcMS), stepwise ionization can be an important route for ionization of the argon gas. However, in the HiPIMS discharge stepwise ionization is found to be negligible during the breakdown phase of the HiPIMS pulse and becomes significant (but never dominating) only later in the pulse. For the sputtered species, Penning ionization can be a significant ionization mechanism in the dcMS discharges, while in the HiPIMS discharge Penning ionization is always negligible as compared to electron impact ionization. The main reasons for these differences are a higher plasma density in the HiPIMS discharge, and a higher electron temperature. Furthermore, we explore the ionization fraction and the ionized flux fraction of the sputtered vapor and compare with recent experimental work.
  •  
4.
  • Gunell, H., et al. (författare)
  • Numerical experiments on plasmoids entering a transverse magnetic field
  • 2009
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 16:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma from the Earth's magnetosheath has previously been observed inside the magnetosphere. Inhomogeneities in the magnetosheath plasma, here called plasmoids, can impact the magnetopause and doing so set up a polarizing field that allows it to penetrate the magnetopause and enter the magnetosphere. A set of simulations of plasmoids with different dimensions is presented in this paper. For plasmoids that are longer than those previously published, waves propagating upstream from the barrier are found. It is also found that the penetration process causes the part of the plasmoid that is upstream of the barrier to rotate. The role of plasmoid width and cross sectional shape in penetration is studied, and for plasmoids that are less than half an ion gyroradius wide, the plasmoid is compressed to obtain a vertically oriented elliptical cross section, regardless of the initial shape. When the initial plasmoid width exceeds the ion gyroradius, the plasmoid still penetrates through a mechanism involving a potential that propagates upstream from the magnetic barrier.
  •  
5.
  • Hurtig, Tomas, et al. (författare)
  • The penetration of plasma clouds across magnetic boundaries : The role of high frequency oscillations
  • 2004
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 11:7, s. L33-L36
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments are reported where a collision-free plasma cloud penetrates a magnetic barrier by self-polarization. Two closely related effects, both fundamental for the penetration mechanism, are studied quantitatively: anomalous fast magnetic field penetration (two orders of magnitude faster than classical), and anomalous fast electron transport (three orders of magnitude faster than classical and two orders of magnitude faster than Bohm diffusion). It is concluded that they are both mediated by highly nonlinear oscillations in the lower hybrid range, driven by a strong diamagnetic current loop which is set up in the plasma in the penetration process.
  •  
6.
  • Hurtig, T., et al. (författare)
  • The role of high frequency oscillations in the penetration of plasma clouds across magnetic boundaries
  • 2005
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments are reported where a collissionfree plasma cloud penetrates a magnetic barrier by self-polarization. Three closely related effects, all fundamental for the penetration mechanism, are studied quantitatively: (1) anomalous fast magnetic field penetration (two orders of magnitude faster than classical), (2) anomalous fast electron transport (three orders of magnitude faster than classical and two orders of magnitude faster than Bohm diffusion), and (3) the ion energy budget as ions enter the potential structure set up by the self-polarized plasma cloud. It is concluded that all three phenomena are closely related and that they are mediated by highly nonlinear oscillations in the lower hybrid range, driven by a strong diamagnetic current loop which is set up in the plasma in the penetration process. The fast magnetic field penetration occurs as a consequence of the anomalous resistivity caused by the wave field and the fast electron transport across magnetic field lines is caused by the correlation between electric field and density oscillations in the wave field. It is also found that ions do not lose energy in proportion to the potential hill they have to climb, rather they are transported against the dc potential structure by the same correlation that is responsible for the electron transport. The results obtained through direct measurements are compared to particle in cell simulations that reproduce most aspects of the high frequency wave field.
  •  
7.
  • Hurtig, T., et al. (författare)
  • Three-dimensional electrostatic particle-in-cell simulation with open boundaries applied to a plasma beam entering a curved magnetic field
  • 2003
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 10:11, s. 4291-4305
  • Tidskriftsartikel (refereegranskat)abstract
    • Three-dimensional electrostatic particle-in-cell simulations of a laboratory experiment with an elongated plasma cloud entering a curved magnetic field are presented. A moving grid is used to follow the plasma motion from a region with longitudinal magnetic field, through a transition region where the field curves, and into a region where the magnetic field has a constant angle of 45degrees to the flow direction. In order to isolate the physics from disturbing boundary effects a method to create open boundary conditions has been implemented. As a result the boundaries are essentially moved to infinity. The simulation reproduces and gives physical insight into several experimental results concerning the plasma's macroscopic behavior in the transition region, which have earlier been only partly understood. First, the deformation of the plasma from a cylinder to a slab; second, the formation of strong currents along the sides of the plasma cloud in the transition region, which continue into field-aligned currents in the (upstream) flow-parallel field region, and close across the magnetic field both in the front and in the back of the penetrating cloud; and, third, the formation of a potential structure including (in the transition region) magnetic-field-aligned electric fields, and (both in, and downstream of, the transition region) a potential trough structure in the plasma's rest frame. It is found that all these macroscopic phenomena are intimately linked and can be understood within one consistent physical picture. The basic driving mechanism is the azimuthal electric field that is induced when, in the plasma's rest frame, the transverse magnetic field grows in time. The plasma's response is complicated by the fact that penetrating plasma clouds are in a parameter range where currents are not related to electric fields by a local conductivity: the ion motion is instead determined by the macroscopic potential structure.
  •  
8.
  • Kalered, Emil, et al. (författare)
  • On the work function and the charging of small (r ≤ 5 nm) nanoparticles in plasmas
  • 2017
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth of nanoparticles (NPs) in plasmas is an attractive technique where improved theoretical understanding is needed for quantitative modeling. The variation of the work function W with size for small NPs, rNP≤ 5 nm, is a key quantity for modeling of three NP charging processes that become increasingly important at a smaller size: electron field emission, thermionic electron emission, and electron impact detachment. Here we report the theoretical values of the work function in this size range. Density functional theory is used to calculate the work functions for a set of NP charge numbers, sizes, and shapes, using copper for a case study. An analytical approximation is shown to give quite accurate work functions provided that rNP > 0.4 nm, i.e., consisting of about >20 atoms, and provided also that the NPs have relaxed close to spherical shape. For smaller sizes, W deviates from the approximation, and also depends on the charge number. Some consequences of these results for nanoparticle charging are outlined. In particular, a decrease in W for NP radius below about 1 nm has fundamental consequences for their charge in a plasma environment, and thereby on the important processes of NP nucleation, early growth, and agglomeration.
  •  
9.
  • Olson, Jonas, 1983-, et al. (författare)
  • Dust-driven and plasma-driven currents in the inner magnetosphere of Saturn
  • 2012
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 19:4, s. 042903-
  • Tidskriftsartikel (refereegranskat)abstract
    • General equations for dust-driven currents and current systems J(D) in magnetized plasmas are derived and, as a concrete example, applied to the E ring of Saturn at radial distances 3R(S) < R < 5R(S). An azimuthal ring current J(D,phi) acts as a current generator and is coupled to two secondary dust-driven current systems down to the ionosphere of Saturn, both rotating with the magnetospheric plasma. One of these closes across the polar cap, and the other over a limited range in latitude. These dust-driven current systems are embedded in three systems of plasma-driven currents J(p): a ring current, a cross-polar-cap current system, and an ion pickup current system. Both the J(D) and the J(p) current systems have been quantitatively assessed from a data set for the E ring of Saturn in which the unknown distribution of small dust is treated by a power law extrapolation from the known distribution of larger dust. From data on the magnetic perturbations during a crossing of the equatorial plane, an approximate constraint on the fraction of the electrons that can be trapped on the dust is derived. For this amount of electron capture, it is demonstrated that all three types of dust-driven currents are, within somewhat more than an order of magnitude, of the same strength as the corresponding types of plasma-driven currents. Considering also that both plasma and dust densities vary with the geyser activity at the south pole of Enceladus, it is concluded that both the dust-driven and the plasma-driven contributions to the current system associated with the E ring need to be retained for a complete description.
  •  
10.
  • Olson, Jonas, et al. (författare)
  • The magnetospheric clock of Saturn-A self-organized plasma dynamo
  • 2013
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 20:8, s. 082901-
  • Tidskriftsartikel (refereegranskat)abstract
    • The plasma in the inner magnetosphere of Saturn is characterized by large-amplitude azimuthal density variations in the equatorial plane, with approximately a sinusoidal dependence on the azimuthal angle [D. A. Gurnett et al., Science 316, 442 (2007)]. This structure rotates with close to the period of the planet itself and has been proposed to steer other nonaxisymmetric phenomena, e. g., the Saturn kilometric radiation SKR [W. S. Kurth et al., Geophys. Res. Lett. 34, L02201 (2007)], and inner-magnetosphere magnetic field perturbations [D. J. Southwood and M. G. Kivelson, J. Geophys. Res. 112(A12), A12222 (2007)]. There is today no consensus regarding the basic driving mechanism. We here propose it to be a plasma dynamo, located in the neutral gas torus of Enceladus but coupled both inwards, through electric currents along the magnetic field lines down to the planet, and outwards through the plasma flow pattern there. Such a dynamo mechanism is shown to self-regulate towards a state that, with realistic parameters, can reproduce the observed configuration of the magnetosphere. This state is characterized by three quantities: the Pedersen conductivity in the polar cap, the ionization time constant in the neutral gas torus, and a parameter characterizing the plasma flow pattern. A particularly interesting property of the dynamo is that regular (i.e., constant-amplitude, sinusoidal) variations in the last parameter can lead to complicated, non-periodic, oscillations around the steady-state configuration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy