SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1095 9572 ;pers:(Ashburner John)"

Sökning: L773:1095 9572 > Ashburner John

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akram, Harith, et al. (författare)
  • Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson's disease
  • 2017
  • Ingår i: NeuroImage. - : Elsevier. - 1053-8119 .- 1095-9572. ; 158, s. 332-345
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Firstly, to identify subthalamic region stimulation clusters that predict maximum improvement in rigidity, bradykinesia and tremor, or emergence of side-effects; and secondly, to map-out the cortical fingerprint, mediated by the hyperdirect pathways which predict maximum efficacy.Methods: High angular resolution diffusion imaging in twenty patients with advanced Parkinson's disease was acquired prior to bilateral subthalamic nucleus deep brain stimulation. All contacts were screened one-year from surgery for efficacy and side-effects at different amplitudes. Voxel-based statistical analysis of volumes of tissue activated models was used to identify significant treatment clusters. Probabilistic tractography was employed to identify cortical connectivity patterns associated with treatment efficacy.Results: All patients responded well to treatment (46% mean improvement off medication UPDRS-III [p < 0.0001]) without significant adverse events. Cluster corresponding to maximum improvement in tremor was in the posterior, superior and lateral portion of the nucleus. Clusters corresponding to improvement in bradykinesia and rigidity were nearer the superior border in a further medial and posterior location. The rigidity cluster extended beyond the superior border to the area of the zona incerta and Forel-H-2 field. When the clusters where averaged, the coordinates of the area with maximum overall efficacy was X = -10(-9.5), Y = -3(-1) and Z = -7(-3) in MNI(AC-PC) space. Cortical connectivity to primary motor area was predictive of higher improvement in tremor; whilst that to supplementary motor area was predictive of improvement in bradykinesia and rigidity; and connectivity to prefrontal cortex was predictive of improvement in rigidity.Interpretation: These findings support the presence of overlapping stimulation sites within the subthalamic nucleus and its superior border, with different cortical connectivity patterns, associated with maximum improvement in tremor, rigidity and bradykinesia.
  •  
2.
  •  
3.
  • Helms, Gunther, et al. (författare)
  • Improved segmentation of deep brain grey matter structures using magnetization transfer (MT) parameter maps
  • 2009
  • Ingår i: NeuroImage. - : Elsevier BV. - 1095-9572 .- 1053-8119. ; 47:1, s. 194-198
  • Tidskriftsartikel (refereegranskat)abstract
    • Basal ganglia and brain stem nuclei are involved in the pathophysiology of various neurological and neuropsychiatric disorders. Currently available structural T1-weighted (T1w) magnetic resonance images do not provide sufficient contrast for reliable automated segmentation of various subcortical grey matter structures. We use a novel, semi-quantitative magnetization transfer (MT) imaging protocol that overcomes limitations in T1w images, which are mainly due to their sensitivity to the high iron content in subcortical grey matter. We demonstrate improved automated segmentation of putamen, pallidum, pulvinar and substantia nigra using MT images. A comparison with segmentation of high-quality T1w images was performed in 49 healthy subjects. Our results show that MT maps are highly suitable for automated segmentation, and so for multi-subject morphometric studies with a focus on subcortical structures.
  •  
4.
  •  
5.
  • Tabelow, Karsten, et al. (författare)
  • hMRI – A toolbox for quantitative MRI in neuroscience and clinical research
  • 2019
  • Ingår i: NeuroImage. - : Elsevier BV. - 1095-9572 .- 1053-8119. ; 194, s. 191-210
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroscience and clinical researchers are increasingly interested in quantitative magnetic resonance imaging (qMRI) due to its sensitivity to micro-structural properties of brain tissue such as axon, myelin, iron and water concentration. We introduce the hMRI-toolbox, an open-source, easy-to-use tool available on GitHub, for qMRI data handling and processing, presented together with a tutorial and example dataset. This toolbox allows the estimation of high-quality multi-parameter qMRI maps (longitudinal and effective transverse relaxation rates and , proton density and magnetisation transfer saturation) that can be used for quantitative parameter analysis and accurate delineation of subcortical brain structures. The qMRI maps generated by the toolbox are key input parameters for biophysical models designed to estimate tissue microstructure properties such as the MR g-ratio and to derive standard and novel MRI biomarkers. Thus, the current version of the toolbox is a first step towards in vivo histology using MRI (hMRI) and is being extended further in this direction. Embedded in the Statistical Parametric Mapping (SPM) framework, it benefits from the extensive range of established SPM tools for high-accuracy spatial registration and statistical inferences and can be readily combined with existing SPM toolboxes for estimating diffusion MRI parameter maps. From a user's perspective, the hMRI-toolbox is an efficient, robust and simple framework for investigating qMRI data in neuroscience and clinical research.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy