SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1095 9572 ;pers:(Mårtensson Johan)"

Sökning: L773:1095 9572 > Mårtensson Johan

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bellander, Martin, et al. (författare)
  • Behavioral correlates of changes in hippocampal gray matter structure during acquisition of foreign vocabulary
  • 2016
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 131, s. 205-213
  • Tidskriftsartikel (refereegranskat)abstract
    • Experience can affect human gray matter volume. The behavioral correlates of individual differences in such brain changes are not well understood. In a group of Swedish individuals studying Italian as a foreign language, we investigated associations among time spent studying, acquired vocabulary, baseline performance on memory tasks, and gray matter changes. As a way of studying episodic memory training, the language learning focused on acquiring foreign vocabulary and lasted for 10 weeks. T-1-weighted structural magnetic resonance imaging and cognitive testing were performed before and after the studies. Learning behavior was monitored via participants' use of a smartphone application dedicated to the study of vocabulary. A whole-brain analysis showed larger changes in gray matter structure of the right hippocampus in the experimental group (N = 33) compared to an active control group (N = 23). A first path analyses revealed that time spent studying rather than acquired knowledge significantly predicted change in gray matter structure. However, this association was not significant when adding performance on baseline memory measures into the model, instead only the participants' performance on a short-term memory task with highly similar distractors predicted the change. This measure may tap similar individual difference factors as those involved in gray matter plasticity of the hippocampus.
  •  
2.
  • Karch, Julian D, et al. (författare)
  • Identifying predictors of within-person variance in MRI-based brain volume estimates
  • 2019
  • Ingår i: NeuroImage. - : Elsevier BV. - 1095-9572 .- 1053-8119. ; 200, s. 575-589
  • Tidskriftsartikel (refereegranskat)abstract
    • Adequate reliability of measurement is a precondition for investigating individual differences and age-related changes in brain structure. One approach to improve reliability is to identify and control for variables that are predictive of within-person variance. To this end, we applied both classical statistical methods and machine-learning-inspired approaches to structural magnetic resonance imaging (sMRI) data of six participants aged 24-31 years gathered at 40-50 occasions distributed over 6-8 months from the Day2day study. We explored the within-person associations between 21 variables covering physiological, affective, social, and environmental factors and global measures of brain volume estimated by VBM8 and FreeSurfer. Time since the first scan was reliably associated with Freesurfer estimates of grey matter volume and total cortex volume, in line with a rate of annual brain volume shrinkage of about 1 percent. For the same two structural measures, time of day also emerged as a reliable predictor with an estimated diurnal volume decrease of, again, about 1 percent. Furthermore, we found weak predictive evidence for the number of steps taken on the previous day and testosterone levels. The results suggest a need to control for time-of-day effects in sMRI research. In particular, we recommend that researchers interested in assessing longitudinal change in the context of intervention studies or longitudinal panels make sure that, at each measurement occasion, (a) a given participant is measured at the same time of day; (b) participants overall are measured at about the same time of day. Furthermore, the potential effects of physical activity, including moderate amounts of aerobic exercise, and testosterone levels on MRI-based measures of brain structure deserve further investigation.
  •  
3.
  • Lampinen, Björn, et al. (författare)
  • Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI : A model comparison using spherical tensor encoding
  • 2017
  • Ingår i: NeuroImage. - : Elsevier BV. - 1095-9572 .- 1053-8119. ; 147, s. 517-531
  • Tidskriftsartikel (refereegranskat)abstract
    • In diffusion MRI (dMRI), microscopic diffusion anisotropy can be obscured by orientation dispersion. Separation of these properties is of high importance, since it could allow dMRI to non-invasively probe elongated structures such as neurites (axons and dendrites). However, conventional dMRI, based on single diffusion encoding (SDE), entangles microscopic anisotropy and orientation dispersion with intra-voxel variance in isotropic diffusivity. SDE-based methods for estimating microscopic anisotropy, such as the neurite orientation dispersion and density imaging (NODDI) method, must thus rely on model assumptions to disentangle these features. An alternative approach is to directly quantify microscopic anisotropy by the use of variable shape of the b-tensor. Along those lines, we here present the 'constrained diffusional variance decomposition' (CODIVIDE) method, which jointly analyzes data acquired with diffusion encoding applied in a single direction at a time (linear tensor encoding, LTE) and in all directions (spherical tensor encoding, STE). We then contrast the two approaches by comparing neurite density estimated using NODDI with microscopic anisotropy estimated using CODIVIDE. Data were acquired in healthy volunteers and in glioma patients. NODDI and CODIVIDE differed the most in gray matter and in gliomas, where NODDI detected a neurite fraction higher than expected from the level of microscopic diffusion anisotropy found with CODIVIDE. The discrepancies could be explained by the NODDI tortuosity assumption, which enforces a connection between the neurite density and the mean diffusivity of tissue. Our results suggest that this assumption invalid, which leads to a NODDI neurite density that is inconsistent between LTE and STE data. Using simulations, we demonstrate that the NODDI assumptions result in parameter bias that precludes the use of NODDI to map neurite density. With CODIVIDE, we found high levels of microscopic anisotropy in white matter, intermediate levels in structures such as the thalamus and the putamen, and low levels in the cortex and in gliomas. We conclude that accurate mapping of microscopic anisotropy requires data acquired with variable shape of the b-tensor.
  •  
4.
  • Lampinen, Björn, et al. (författare)
  • Probing brain tissue microstructure with MRI: principles, challenges, and the role of multidimensional diffusion-relaxation encoding.
  • 2023
  • Ingår i: NeuroImage. - 1095-9572. ; 282
  • Tidskriftsartikel (refereegranskat)abstract
    • Diffusion MRI uses the random displacement of water molecules to sensitize the signal to brain microstructure and to properties such as the density and shape of cells. Microstructure modeling techniques aim to estimate these properties from acquired data by separating the signal between virtual tissue 'compartments' such as the intra-neurite and the extra-cellular space. A key challenge is that the diffusion MRI signal is relatively featureless compared with the complexity of brain tissue. Another challenge is that the tissue microstructure is wildly different within the gray and white matter of the brain. In this review, we use results from multidimensional diffusion encoding techniques to discuss these challenges and their tentative solutions. Multidimensional encoding increases the information content of the data by varying not only the b-value and the encoding direction but also additional experimental parameters such as the shape of the b-tensor and the echo time. Three main insights have emerged from such encoding. First, multidimensional data contradict common model assumptions on diffusion and T2 relaxation, and illustrates how the use of these assumptions cause erroneous interpretations in both healthy brain and pathology. Second, many model assumptions can be dispensed with if data are acquired with multidimensional encoding. The necessary data can be easily acquired in vivo using protocols optimized to minimize Cramér-Rao lower bounds. Third, microscopic diffusion anisotropy reflects the presence of axons but not dendrites. This insight stands in contrast to current 'neurite models' of brain tissue, which assume that axons in white matter and dendrites in gray matter feature highly similar diffusion. Nevertheless, as an axon-based contrast, microscopic anisotropy can differentiate gray and white matter when myelin alterations confound conventional MRI contrasts.
  •  
5.
  • Lisofsky, Nina, et al. (författare)
  • Hippocampal volume and functional connectivity changes during the female menstrual cycle.
  • 2015
  • Ingår i: NeuroImage. - : Elsevier BV. - 1095-9572 .- 1053-8119. ; 118, s. 154-162
  • Tidskriftsartikel (refereegranskat)abstract
    • Hippocampal volume has been shown to be sensitive to variations in estrogen and progesterone levels across rodents' estrous cycle. However, little is known about the covariation of hormone levels and brain structure in the course of the human menstrual cycle. Here, we examine this covariation with a multi-method approach that includes several brain imaging methods and hormonal assessments. We acquired structural and functional scans from 21 naturally cycling women on four time points during their cycles (early follicular phase, late follicular phase, ovulation and luteal phase). Hormone blood concentrations and cognitive performance in different domains were assessed on each of the measurement occasions. Structural MRI images were processed by means of whole-brain voxel-based morphometry and FreeSurfer. With either method, bilateral increases in hippocampal volume were found in the late follicular phase relative to the early follicular phase. The gray matter probability in regions of hippocampal volume increase was associated with lower mean diffusivity in the same region. In addition, we observed higher functional connectivity between the hippocampi and the bilateral superior parietal lobe in the late follicular phase. We did not find any reliable cycle-related performance variations on the cognitive tasks. The present results show that hormonal fluctuations covary with hippocampal structure and function in the course of the human menstrual cycle.
  •  
6.
  • Mårtensson, Johan, et al. (författare)
  • Growth of language-related brain areas after foreign language learning
  • 2012
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 63:1, s. 240-244
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of adult foreign-language acquisition on human brain organization is poorly understood. We studied cortical thickness and hippocampal volumes of conscript interpreters before and after three months of intense language studies. Results revealed increases in hippocampus volume and in cortical thickness of the left middle frontal gyrus, inferior frontal gyrus, and superior temporal gyrus for interpreters relative to controls. The right hippocampus and the left superior temporal gyrus were structurally more malleable in interpreters acquiring higher proficiency in the foreign language. Interpreters struggling relatively more to master the language displayed larger gray matter increases in the middle frontal gyrus. These findings confirm structural changes in brain regions known to serve language functions during foreign-language acquisition.
  •  
7.
  • Wenger, Elisabeth, et al. (författare)
  • Cortical thickness changes following spatial navigation training in adulthood and aging
  • 2012
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 59:4, s. 3389-3397
  • Tidskriftsartikel (refereegranskat)abstract
    • A widespread network involving cortical and subcortical brain structures forms the neural substrate of human spatial navigation. Most studies investigating plasticity of this network have focused on the hippocampus. Here, we investigate age differences in cortical thickness changes evoked by four months of spatial navigation training in 91 men aged 20-30 or 60-70 years. Cortical thickness was automatically measured before, immediately after, and four months after termination of training. Younger as well as older navigators evidenced large improvements in navigation performance that were partly maintained after termination of training. Importantly, training-related cortical thickening in left precuneus and paracentral lobule were observed in young navigators only. Thus, spatial navigation training appears to affect cortical brain structure of young adults, but there is reduced potential for experience-dependent cortical alterations in old age.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy