SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1095 9572 ;pers:(Szczepankiewicz Filip)"

Sökning: L773:1095 9572 > Szczepankiewicz Filip

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lampinen, Björn, et al. (författare)
  • Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI : A model comparison using spherical tensor encoding
  • 2017
  • Ingår i: NeuroImage. - : Elsevier BV. - 1095-9572 .- 1053-8119. ; 147, s. 517-531
  • Tidskriftsartikel (refereegranskat)abstract
    • In diffusion MRI (dMRI), microscopic diffusion anisotropy can be obscured by orientation dispersion. Separation of these properties is of high importance, since it could allow dMRI to non-invasively probe elongated structures such as neurites (axons and dendrites). However, conventional dMRI, based on single diffusion encoding (SDE), entangles microscopic anisotropy and orientation dispersion with intra-voxel variance in isotropic diffusivity. SDE-based methods for estimating microscopic anisotropy, such as the neurite orientation dispersion and density imaging (NODDI) method, must thus rely on model assumptions to disentangle these features. An alternative approach is to directly quantify microscopic anisotropy by the use of variable shape of the b-tensor. Along those lines, we here present the 'constrained diffusional variance decomposition' (CODIVIDE) method, which jointly analyzes data acquired with diffusion encoding applied in a single direction at a time (linear tensor encoding, LTE) and in all directions (spherical tensor encoding, STE). We then contrast the two approaches by comparing neurite density estimated using NODDI with microscopic anisotropy estimated using CODIVIDE. Data were acquired in healthy volunteers and in glioma patients. NODDI and CODIVIDE differed the most in gray matter and in gliomas, where NODDI detected a neurite fraction higher than expected from the level of microscopic diffusion anisotropy found with CODIVIDE. The discrepancies could be explained by the NODDI tortuosity assumption, which enforces a connection between the neurite density and the mean diffusivity of tissue. Our results suggest that this assumption invalid, which leads to a NODDI neurite density that is inconsistent between LTE and STE data. Using simulations, we demonstrate that the NODDI assumptions result in parameter bias that precludes the use of NODDI to map neurite density. With CODIVIDE, we found high levels of microscopic anisotropy in white matter, intermediate levels in structures such as the thalamus and the putamen, and low levels in the cortex and in gliomas. We conclude that accurate mapping of microscopic anisotropy requires data acquired with variable shape of the b-tensor.
  •  
2.
  • Lampinen, Björn, et al. (författare)
  • Probing brain tissue microstructure with MRI: principles, challenges, and the role of multidimensional diffusion-relaxation encoding.
  • 2023
  • Ingår i: NeuroImage. - 1095-9572. ; 282
  • Tidskriftsartikel (refereegranskat)abstract
    • Diffusion MRI uses the random displacement of water molecules to sensitize the signal to brain microstructure and to properties such as the density and shape of cells. Microstructure modeling techniques aim to estimate these properties from acquired data by separating the signal between virtual tissue 'compartments' such as the intra-neurite and the extra-cellular space. A key challenge is that the diffusion MRI signal is relatively featureless compared with the complexity of brain tissue. Another challenge is that the tissue microstructure is wildly different within the gray and white matter of the brain. In this review, we use results from multidimensional diffusion encoding techniques to discuss these challenges and their tentative solutions. Multidimensional encoding increases the information content of the data by varying not only the b-value and the encoding direction but also additional experimental parameters such as the shape of the b-tensor and the echo time. Three main insights have emerged from such encoding. First, multidimensional data contradict common model assumptions on diffusion and T2 relaxation, and illustrates how the use of these assumptions cause erroneous interpretations in both healthy brain and pathology. Second, many model assumptions can be dispensed with if data are acquired with multidimensional encoding. The necessary data can be easily acquired in vivo using protocols optimized to minimize Cramér-Rao lower bounds. Third, microscopic diffusion anisotropy reflects the presence of axons but not dendrites. This insight stands in contrast to current 'neurite models' of brain tissue, which assume that axons in white matter and dendrites in gray matter feature highly similar diffusion. Nevertheless, as an axon-based contrast, microscopic anisotropy can differentiate gray and white matter when myelin alterations confound conventional MRI contrasts.
  •  
3.
  • Szczepankiewicz, Filip, et al. (författare)
  • Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: Applications in healthy volunteers and in brain tumors
  • 2015
  • Ingår i: NeuroImage. - : Elsevier BV. - 1095-9572 .- 1053-8119. ; 104, s. 241-252
  • Tidskriftsartikel (refereegranskat)abstract
    • The anisotropy of water diffusion in brain tissue is affected by both disease and development. This change can be detected using diffusion MRI and is often quantified by the fractional anisotropy (FA) derived from diffusion tensor imaging (DTI). Although FA is sensitive to anisotropic cell structures, such as axons, it is also sensitive to their orientation dispersion. This is a major limitation to the use of FA as a biomarker for "tissue integrity", especially in regions of complex microarchitecture. In this work, we seek to circumvent this limitation by disentangling the effects of microscopic diffusion anisotropy from the orientation dispersion. The microscopic fractional anisotropy (mu FA) and the order parameter (OP) were calculated from the contrast between signal prepared with directional and isotropic diffusion encoding, where the latter was achieved by magic angle spinning of the q-vector (qMAS). These parameters were quantified in healthy volunteers and in two patients; one patient with meningioma and one with glioblastoma. Finally, we used simulations to elucidate the relation between FA and mu FA in various micro-architectures. Generally, mu FA was high in the white matter and low in the gray matter. In the white matter, the largest differences between mu FA and FA were found in crossing white matter and in interfaces between large white matter tracts, where mu FA was high while FA was low. Both tumor types exhibited a low FA, in contrast to the mu FA which was high in the meningioma and low in the glioblastoma, indicating that the meningioma contained disordered anisotropic structures, while the glioblastoma did not. This interpretation was confirmed by histological examination. We conclude that FA from DTI reflects both the amount of diffusion anisotropy and orientation dispersion. We suggest that the mu FA and OP may complement FA by independently quantifying the microscopic anisotropy and the level of orientation coherence. (C) 2014 The Authors. Published by Elsevier Inc.
  •  
4.
  • Szczepankiewicz, Filip, et al. (författare)
  • Variability in diffusion kurtosis imaging: Impact on study design, statistical power and interpretation.
  • 2013
  • Ingår i: NeuroImage. - : Elsevier BV. - 1095-9572 .- 1053-8119. ; 76:1, s. 145-154
  • Tidskriftsartikel (refereegranskat)abstract
    • Diffusion kurtosis imaging (DKI) is an emerging technique with the potential to quantify properties of tissue microstructure that may not be observable using diffusion tensor imaging (DTI). In order to help design DKI studies and improve interpretation of DKI results, we employed statistical power analysis to characterize three aspects of variability in four DKI parameters; the mean diffusivity, fractional anisotropy, mean kurtosis, and radial kurtosis. First, we quantified the variability in terms of the group size required to obtain a statistical power of 0.9. Second, we investigated the relative contribution of imaging and post-processing noise to the total variance, in order to estimate the benefits of longer scan times versus the inclusion of more subjects. Third, we evaluated the potential benefit of including additional covariates such as the size of the structure when testing for differences in group means. The analysis was performed in three major white matter structures of the brain: the superior cingulum, the corticospinal tract, and the mid-sagittal corpus callosum, extracted using diffusion tensor tractography and DKI data acquired in a healthy cohort. The results showed heterogeneous variability across and within the white matter structures. Thus, the statistical power varies depending on parameter and location, which is important to consider if a pathogenesis pattern is inferred from DKI data. In the data presented, inter-subject differences contributed more than imaging noise to the total variability, making it more efficient to include more subjects rather than extending the scan-time per subject. Finally, strong correlations between DKI parameters and the structure size were found for the cingulum and corpus callosum. Structure size should thus be considered when quantifying DKI parameters, either to control for its potentially confounding effect, or as a means of reducing unexplained variance.
  •  
5.
  • Westin, Carl-Fredrik, et al. (författare)
  • Q-space trajectory imaging for multidimensional diffusion MRI of the human brain
  • 2016
  • Ingår i: NeuroImage. - : Elsevier. - 1053-8119 .- 1095-9572. ; 135, s. 345-362
  • Tidskriftsartikel (refereegranskat)abstract
    • This work describes a new diffusion MR framework for imaging and modeling of microstructure that we call q-space trajectory imaging (QTI). The QTI framework consists of two parts: encoding and modeling. First we propose q-space trajectory encoding, which uses time-varying gradients to probe a trajectory in q-space, in contrast to traditional pulsed field gradient sequences that attempt to probe a point in q-space. Then we propose a microstructure model, the diffusion tensor distribution (DTD) model, which takes advantage of additional information provided by QTI to estimate a distributional model over diffusion tensors. We show that the QTI framework enables microstructure modeling that is not possible with the traditional pulsed gradient encoding as introduced by Stejskal and Tanner. In our analysis of QTI, we find that the well-known scalar b-value naturally extends to a tensor-valued entity, i.e., a diffusion measurement tensor, which we call the b-tensor. We show that b-tensors of rank 2 or 3 enable estimation of the mean and covariance of the DTD model in terms of a second order tensor (the diffusion tensor) and a fourth order tensor. The QTI framework has been designed to improve discrimination of the sizes, shapes, and orientations of diffusion microenvironments within tissue. We derive rotationally invariant scalar quantities describing intuitive microstructural features including size, shape, and orientation coherence measures. To demonstrate the feasibility of QTI on a clinical scanner, we performed a small pilot study comparing a group of five healthy controls with five patients with schizophrenia. The parameter maps derived from QTI were compared between the groups, and 9 out of the 14 parameters investigated showed differences between groups. The ability to measure and model the distribution of diffusion tensors, rather than a quantity that has already been averaged within a voxel, has the potential to provide a powerful paradigm for the study of complex tissue architecture.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy