SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1354 1013 OR L773:1365 2486 ;pers:(Lagergren Fredrik)"

Sökning: L773:1354 1013 OR L773:1365 2486 > Lagergren Fredrik

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lindroth, Anders, et al. (författare)
  • Storms can cause Europe-wide reduction in forest carbon sink
  • 2009
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 15:2, s. 346-355
  • Tidskriftsartikel (refereegranskat)abstract
    • Disturbance of ecosystems is a major factor in regional carbon budgets, and it is believed to be partly responsible for the large inter-annual variability of the terrestrial part of the carbon balance. Forest fires have so far been considered as the most important disturbance but also other forms of disturbance such as insect outbreaks or wind-throw might contribute significantly to the largely unexplained inter-annual variability, at least in specific regions. The effect of wind-throw has not yet been estimated because of lack of data on how carbon fluxes are affected. The Gudrun storm, which hit Sweden in January 2005, resulted in ca. 66 million m(3) of wind-thrown stem wood on an area of ca. 272 000 ha. Using a model (BIOME-BGC) calibrated to CO2 flux measurements at two sites, the annual net ecosystem productivity during the first year after the storm was estimated to be in the range -897 to -1259 g C m(-2) yr(-1). This is a much higher loss compared with harvested (clear-cut) forests in Europe, which ranged between ca. -420 and -100 g m(-2) yr(-1). The reduction in the carbon sink scaled to the whole wind-thrown area was estimated at ca. 3 million tons C during the first year. By historical data on wind-throw in Europe combined with modelling, we estimated that the large Lothar storm in 1999 reduced the European carbon balance by ca. 16 million tons C, this is ca. 30% of the net biome production in Europe. We conclude that the impact of increased forest damage by more frequent storms in future climate change scenarios must be considered and that intermittent large wind-throw events may explain a part of the large inter-annual variability in the terrestrial carbon sink.
  •  
2.
  • Luyssaert, S., et al. (författare)
  • CO2 balance of boreal, temperate, and tropical forests derived from a global database
  • 2007
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 13:12, s. 2509-2537
  • Forskningsöversikt (refereegranskat)abstract
    • Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome-specific carbon budgets; to re-examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 degrees C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO2 balance required the introduction of substantial biome-specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non-CO2 carbon fluxes are not presently being adequately accounted for.
  •  
3.
  •  
4.
  • Makela, Annikki, et al. (författare)
  • Developing an empirical model of stand GPP with the LUE approach: analysis of eddy covariance data at five contrasting conifer sites in Europe
  • 2008
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 14:1, s. 92-108
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper develops a statistical model for daily gross primary production (GPP) in boreal and temperate coniferous forests. The model applies the light use efficiency (LUE) approach, which estimates the conversion efficiency of daily absorbed photosynthetically active radiation (APAR) into daily GPP as a product of potential LUE and modifying factors. The latter were derived from daily total APAR and daily mean temperature, vapour pressure deficit (VPD) and soil water content (SWC). Modelling data came from five European eddy covariance measurement towers over 2-8 years. The model was tested against independent data from two AmeriFlux stations. The model with the APAR, temperature and VPD modifiers worked well in almost all the site-year combinations, but the SWC modifier only improved the fit in few cases. Geographical variation was found in the modifiers and potential LUE in site-specific models. When a model was fitted to pooled data, differences between sites could be explained by potential LUE, leaf area and environmental conditions. The test against the AmeriFlux data corroborated this finding. The potential LUE varied from 1.9 to 3.1 g C MJ(-1), and a weak correlation was found between foliar nitrogen concentration and potential LUE. Some year-to-year variation remained which could be captured by neither the pooled nor the site-specific models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy