SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1354 1013 OR L773:1365 2486 ;pers:(Linder Sune)"

Sökning: L773:1354 1013 OR L773:1365 2486 > Linder Sune

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Linder, Sune (författare)
  • Effects of elevated atmospheric [CO2] on instantaneous transpiration efficiency at leaf and canopy scales in Eucalyptus saligna
  • 2012
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 18, s. 585-595
  • Tidskriftsartikel (refereegranskat)abstract
    • Rising atmospheric concentrations of CO2 (Ca) can reduce stomatal conductance and transpiration rate in trees, but the magnitude of this effect varies considerably among experiments. The theory of optimal stomatal behaviour predicts that the ratio of photosynthesis to transpiration (instantaneous transpiration efficiency, ITE) should increase in proportion to Ca. We hypothesized that plants regulate stomatal conductance optimally in response to rising Ca. We tested this hypothesis with data from young Eucalyptus saligna Sm. trees grown in 12 climate-controlled whole-tree chambers for 2 years at ambient and elevated Ca. Elevated Ca was ambient + 240 ppm, 60% higher than ambient Ca. Leaf-scale gas exchange was measured throughout the second year of the study and leaf-scale ITE increased by 60% under elevated Ca, as predicted. Values of leaf-scale ITE depended strongly on vapour pressure deficit (D) in both CO2 treatments. Whole-canopy CO2 and H2O fluxes were also monitored continuously for each chamber throughout the second year. There were small differences in D between Ca treatments, which had important effects on values of canopy-scale ITE. However, when Ca treatments were compared at the same D, canopy-scale ITE was consistently increased by 60%, again as predicted. Importantly, leaf and canopy-scale ITE were not significantly different, indicating that ITE was not scale-dependent. Observed changes in transpiration rate could be explained on the basis that ITE increased in proportion to Ca. The effect of elevated Ca on photosynthesis increased with rising D. At high D, Ca had a large effect on photosynthesis and a small effect on transpiration rate. At low D, in contrast, there was a small effect of Ca on photosynthesis, but a much larger effect on transpiration rate. If shown to be a general response, the proportionality of ITE with Ca will allow us to predict the effects of Ca on transpiration rate.
  •  
2.
  • Linder, Sune, et al. (författare)
  • Simple additive effects are rare: Responses of biomass and soil processes to combined manipulations of CO2 and temperature
  • 2012
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 18, s. 2681-2693
  • Forskningsöversikt (refereegranskat)abstract
    • In recent years, increased awareness of the potential interactions between rising atmospheric CO2 concentrations ([ CO2 ]) and temperature has illustrated the importance of multifactorial ecosystem manipulation experiments for validating Earth System models. To address the urgent need for increased understanding of responses in multifactorial experiments, this article synthesizes how ecosystem productivity and soil processes respond to combined warming and [ CO2 ] manipulation, and compares it with those obtained in single factor [ CO2 ] and temperature manipulation experiments. Across all combined elevated [ CO2 ] and warming experiments, biomass production and soil respiration were typically enhanced. Responses to the combined treatment were more similar to those in the [ CO2 ]-only treatment than to those in the warming-only treatment. In contrast to warming-only experiments, both the combined and the [ CO2 ]-only treatments elicited larger stimulation of fine root biomass than of aboveground biomass, consistently stimulated soil respiration, and decreased foliar nitrogen (N) concentration. Nonetheless, mineral N availability declined less in the combined treatment than in the [ CO2 ]-only treatment, possibly due to the warming-induced acceleration of decomposition, implying that progressive nitrogen limitation (PNL) may not occur as commonly as anticipated from single factor [ CO2 ] treatment studies. Responses of total plant biomass, especially of aboveground biomass, revealed antagonistic interactions between elevated [ CO2 ] and warming, i.e. the response to the combined treatment was usually less-than-additive. This implies that productivity projections might be overestimated when models are parameterized based on single factor responses. Our results highlight the need for more (and especially more long-term) multifactor manipulation experiments. Because single factor CO2 responses often dominated over warming responses in the combined treatments, our results also suggest that projected responses to future global warming in Earth System models should not be parameterized using single factor warming experiments.
  •  
3.
  •  
4.
  • Linder, Sune, et al. (författare)
  • A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies
  • 2016
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 22, s. 889-902
  • Tidskriftsartikel (refereegranskat)abstract
    • Rising atmospheric [CO2], c(a), is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2], c(i), a constant drawdown in CO2 (c(a)-c(i)), and a constant c(i)/c(a). These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying c(a). The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to c(a). To assess leaf gas-exchange regulation strategies, we analyzed patterns in c(i) inferred from studies reporting C stable isotope ratios (C-13) or photosynthetic discrimination () in woody angiosperms and gymnosperms that grew across a range of c(a) spanning at least 100ppm. Our results suggest that much of the c(a)-induced changes in c(i)/c(a) occurred across c(a) spanning 200 to 400ppm. These patterns imply that c(a)-c(i) will eventually approach a constant level at high c(a) because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant c(i). Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low c(a), when additional water loss is small for each unit of C gain, and increasingly water-conservative at high c(a), when photosystems are saturated and water loss is large for each unit C gain.
  •  
5.
  • Metcalfe, Daniel, et al. (författare)
  • Informing climate models with rapid chamber measurements of forest carbon uptake
  • 2017
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 23:5, s. 2130-2139
  • Tidskriftsartikel (refereegranskat)abstract
    • Models predicting ecosystem carbon dioxide (CO2) exchange under future climate change rely on relatively few real-world tests of their assumptions and outputs. Here, we demonstrate a rapid and cost-effective method to estimateCO2exchange from intact vegetation patches under varying atmospheric CO2concentrations.We find that net ecosys-tem CO2uptake (NEE) in a boreal forest rose linearly by 4.7  0.2% of the current ambient rate for every 10 ppmCO2increase, with no detectable influence of foliar biomass, season, or nitrogen (N) fertilization. The lack of any clearshort-term NEE response to fertilization in such an N-limited system is inconsistent with the instantaneous downreg-ulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with consider-able empirical support – diversion of excess carbon to storage compounds – into an existing earth system modelbrings the model output into closer agreement with our field measurements. A global simulation incorporating thismodified model reduces a long-standing mismatch between the modeled and observed seasonal amplitude of atmo-spheric CO2. Wider application of this chamber approach would provide critical data needed to further improvemodeled projections of biosphere–atmosphere CO2exchange in a changing climate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy