SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1354 1013 OR L773:1365 2486 ;pers:(Pleijel Håkan 1958)"

Sökning: L773:1354 1013 OR L773:1365 2486 > Pleijel Håkan 1958

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pleijel, Håkan, 1958, et al. (författare)
  • Yield vs. Quality trade-offs for wheat in response to carbon dioxide and ozone
  • 2012
  • Ingår i: Global Change Biology. - : Wiley. - 1365-2486 .- 1354-1013. ; 18:2, s. 596-605
  • Tidskriftsartikel (refereegranskat)abstract
    • Although it is established that there exist potential trade-offs between grain yield and grain quality in wheat exposed to elevated carbon dioxide (CO2) and ozone (O3), their underlying causes remain poorly explored. To investigate the processes affecting grain quality under altered CO2 and O3, we analysed 57 experiments with CO2 or O3 exposure in different exposure systems. The study covered 24 cultivars studied in 112 experimental treatments from 11 countries. A significant growth dilution effect on grain protein was found: a change in grain yield of 10% by O3 was associated with a change in grain protein yield of 8.1% (R2 = 0.96), whereas a change in yield effect of 10% by CO2 was linked to a change in grain protein yield effect of 7.5% (R2 = 0.74). Superimposed on this effect, elevated CO2, but not O3, had a significant negative effect on grain protein yield also in the absence of effects on grain yield, indicating that there exists a process by which CO2 restricts grain protein accumulation, which is absent for O3. Grain mass, another quality trait, was more strongly affected by O3 than grain number, whereas the opposite was true for CO2. Harvest index was strongly and negatively influenced by O3, but was unaffected by CO2. We conclude that yield vs. protein trade-offs for wheat in response to CO2 and O3 are constrained by close relationships between effects on grain biomass and less than proportional effects on grain protein. An important and novel finding was that elevated CO2 has a direct negative effect on grain protein accumulation independent of the yield effect, supporting recent evidence of CO2-induced impairment of nitrate uptake/assimilation. Finally, our results demonstrated that processes underlying responses of grain yield vs. quality trade-offs are very different in wheat exposed to elevated O3 compared with elevated CO2.
  •  
2.
  • Feng, Zhaozhong, et al. (författare)
  • A unifying explanation for variation in ozone sensitivity among woody plants
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 24:1, s. 78-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropospheric ozone is considered the most detrimental air pollutant for vegetation at the global scale, with negative consequences for both provisioning and climate regulating ecosystem services. In spite of recent developments in ozone exposure metrics, from a concentration-based to a more physiologically relevant stomatal flux-based index, large-scale ozone risk assessment is still complicated by a large and unexplained variation in ozone sensitivity among tree species. Here, we explored whether the variation in ozone sensitivity among woody species can be linked to interspecific variation in leaf morphology. We found that ozone tolerance at the leaf level was closely linked to leaf dry mass per unit leaf area (LMA) and that whole-tree biomass reductions were more strongly related to stomatal flux per unit leaf mass (r 2 =0.56) than to stomatal flux per unit leaf area (r 2 =0.42). Furthermore, the interspecific variation in slopes of ozone flux–response relationships was considerably lower when expressed on a leaf mass basis (coefficient of variation, CV=36%) than when expressed on a leaf area basis (CV=66%), and relationships for broadleaf and needle-leaf species converged when using the mass-based index. These results show that much of the variation in ozone sensitivity among woody plants can be explained by interspecific variation in LMA and that large-scale ozone impact assessment could be greatly improved by considering this well-known and easily measured leaf trait.
  •  
3.
  • Feng, Zhaozhong, et al. (författare)
  • Constraints to nitrogen acquisition of terrestrial plants under elevated CO2
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21:8, s. 3152-3168
  • Tidskriftsartikel (refereegranskat)abstract
    • A key part of the uncertainty in terrestrial feedbacks on climate change is related to how and to what extent nitrogen (N) availability constrains the stimulation of terrestrial productivity by elevated CO2 (eCO2), and whether or not this constraint will become stronger over time. We explored the ecosystem-scale relationship between responses of plant productivity and N acquisition to eCO2 in Free-Air CO2 Enrichment (FACE) experiments in grassland, cropland and forest ecosystems and found that: (i) In all three ecosystem types, this relationship was positive, linear, and strong (r2 = 0.68), but exhibited a negative intercept such that plant N acquisition was decreased by 10% when eCO2 caused neutral or modest changes in productivity. Since the ecosystems were markedly N limited, plants with minimal productivity responses to eCO2 likely acquired less N than ambient CO2-grown counterparts because access was decreased, and not because demand was lower. (ii) Plant N concentration was lower under eCO2, and this decrease was independent of the presence or magnitude of eCO2-induced productivity enhancement, refuting the long-held hypothesis that this effect results from growth dilution. (iii) Effects of eCO2 on productivity and N acquisition did not diminish over time, while the typical eCO2-induced decrease in plant N concentration did. Our results suggest that, at the decennial time scale covered by FACE studies, N limitation of eCO2-induced terrestrial productivity enhancement is associated with negative effects of eCO2 on plant N acquisition rather than with growth dilution of plant N or processes leading to progressive N limitation.
  •  
4.
  • Mills, Gina, 1959, et al. (författare)
  • Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 24:10, s. 4869-4893
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing both crop productivity and the tolerance of crops to abiotic and biotic stresses is a major challenge for global food security in our rapidly changing climate. For the first time, we show how the spatial variation and severity of tropospheric ozone effects on yield compare with effects of other stresses on a global scale, and discuss mitigating actions against the negative effects of ozone. We show that the sensitivity to ozone declines in the order soybean>wheat>maize>rice, with genotypic variation in response being most pronounced for soybean and rice. Based on stomatal uptake, we estimate that ozone (mean of 2010–2012) reduces global yield annually by 12.4%, 7.1%, 4.4% and 6.1% for soybean, wheat, rice and maize, respectively (the “ozone yield gaps”), adding up to 227Tg of lost yield. Our modelling shows that the highest ozone-induced production losses for soybean are in North and South America whilst for wheat they are in India and China, for rice in parts of India, Bangladesh, China and Indonesia, and for maize in China and the United States. Crucially, we also show that the same areas are often also at risk of high losses from pests and diseases, heat stress and to a lesser extent aridity and nutrient stress. In a solution-focussed analysis of these results, we provide a crop ideotype with tolerance of multiple stresses (including ozone) and describe how ozone effects could be included in crop breeding programmes. We also discuss altered crop management approaches that could be applied to reduce ozone impacts in the shorter term. Given the severity of ozone effects on staple food crops in areas of the world that are also challenged by other stresses, we recommend increased attention to the benefits that could be gained from addressing the ozone yield gap.
  •  
5.
  • Mills, Gina, 1959, et al. (författare)
  • Ozone pollution will compromise efforts to increase global wheat production
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 24:8, s. 3560-3574
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction of high-performing crop cultivars and crop/soil water management practices that increase the stomatal uptake of carbon dioxide and photosynthesis will be instrumental in realizing the United Nations Sustainable Development Goal (SDG) of achieving food security. To date, however, global assessments of how to increase crop yield have failed to consider the negative effects of tropospheric ozone, a gaseous pollutant that enters the leaf stomatal pores of plants along with carbon dioxide, and is increasing in concentration globally, particularly in rapidly developing countries. Earlier studies have simply estimated that the largest effects are in the areas with the highest ozone concentrations. Using a modelling method that accounts for the effects of soil moisture deficit and meteorological factors on the stomatal uptake of ozone, we show for the first time that ozone impacts on wheat yield are particularly large in humid rain-fed and irrigated areas of major wheat-producing countries (e.g. United States, France, India, China and Russia). Averaged over 2010-2012, we estimate that ozone reduces wheat yields by a mean 9.9% in the northern hemisphere and 6.2% in the southern hemisphere, corresponding to some 85 Tg (million tonnes) of lost grain. Total production losses in developing countries receiving Official Development Assistance are 50% higher than those in developed countries, potentially reducing the possibility of achieving UN SDG2. Crucially, our analysis shows that ozone could reduce the potential yield benefits of increasing irrigation usage in response to climate change because added irrigation increases the uptake and subsequent negative effects of the pollutant. We show that mitigation of air pollution in a changing climate could play a vital role in achieving the above-mentioned UN SDG, while also contributing to other SDGs related to human health and well-being, ecosystems and climate change.
  •  
6.
  • Pleijel, Håkan, 1958, et al. (författare)
  • Nitrogen application is required to realize wheat yield stimulation by elevated CO2 but will not remove the CO2 -induced reduction in grain protein concentration
  • 2019
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 25, s. 1868-1876
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 John Wiley & Sons Ltd Elevated CO 2 (eCO 2 ) generally promotes increased grain yield (GY) and decreased grain protein concentration (GPC), but the extent to which these effects depend on the magnitude of fertilization remains unclear. We collected data on the eCO 2 responses of GY, GPC and grain protein yield and their relationships with nitrogen (N) application rates across experimental data covering 11 field grown wheat (Triticum aestivum) cultivars studied in eight countries on four continents. The eCO 2 -induced stimulation of GY increased with N application rates up to ~200kg/ha. At higher N application, stimulation of GY by eCO 2 stagnated or even declined. This was valid both when the yield stimulation was expressed as the total effect and using per ppm CO 2 scaling. GPC was decreased by on average 7% under eCO 2 and the magnitude of this effect did not depend on N application rate. The net effect of responses on GY and protein concentration was that eCO 2 typically increased and decreased grain protein yield at N application rates below and above ~100kg/ha respectively. We conclude that a negative effect on wheat GPC seems inevitable under eCO 2 and that substantial N application rates may be required to sustain wheat protein yields in a world with rising CO 2 .
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy