SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1361 6528 OR L773:0957 4484 ;mspu:(researchreview)"

Sökning: L773:1361 6528 OR L773:0957 4484 > Forskningsöversikt

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ghasemi, Masoomeh, et al. (författare)
  • Assembling your nanowire : An overview of composition tuning in ternary III-V nanowires
  • 2021
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 32:7
  • Forskningsöversikt (refereegranskat)abstract
    • The ability to grow defect-free nanowires in lattice-mismatched material systems and to design their properties has made them ideal candidates for applications in fields as diverse as nanophotonics, nanoelectronics and medicine. After studying nanostructures consisting of elemental and binary compound semiconductors, scientists turned their attention to more complex systems - ternary nanowires. Composition control is key in these nanostructures since it enables bandgap engineering. The use of different combinations of compounds and different growth methods has resulted in numerous investigations. The aim of this review is to present a survey of the material systems studied to date, and to give a brief overview of the issues tackled and the progress achieved in nanowire composition tuning. We focus on ternary III x III1-x V nanowires (AlGaAs, AlGaP, AlInP, InGaAs, GaInP and InGaSb) and IIIV x V1-x nanowires (InAsP, InAsSb, InPSb, GaAsP, GaAsSb and GaSbP).
  •  
2.
  • Borg, Mattias, et al. (författare)
  • Synthesis and properties of antimonide nanowires
  • 2013
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 24:20
  • Forskningsöversikt (refereegranskat)abstract
    • Antimonide semiconductors are suitable for low-power electronics and long-wavelength optoelectronic applications. In recent years research on antimonide nanowires has become a rapidly growing field, and nano-materials have promising applications in fundamental physics research, for tunnel field-effect transistors, and long-wavelength detectors. In this review, we give an overview of the field of antimonide nanowires, beginning with a description of the synthesis of these nano-materials. Here we summarize numerous reports on antimonide nanowire growth, with the aim to give an overall picture of the distinctive properties of antimonide nanowire synthesis. Secondly, we review the data on the physical properties and emerging applications for antimonide nanowires, focusing on applications in electronics and optics.
  •  
3.
  • Ponseca, Carlito, et al. (författare)
  • Excited state and charge-carrier dynamics in perovskite solar cell materials.
  • 2016
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 27:8
  • Forskningsöversikt (refereegranskat)abstract
    • Organo-metal halide perovskites (OMHPs) have attracted enormous interest in recent years as materials for application in optoelectronics and solar energy conversion. These hybrid semiconductors seem to have the potential to challenge traditional silicon technology. In this review we will give an account of the recent development in the understanding of the fundamental light-induced processes in OMHPs from charge-photo generation, migration of charge carries through the materials and finally their recombination. Our and other literature reports on time-resolved conductivity, transient absorption and photoluminescence properties are used to paint a picture of how we currently see the fundamental excited state and charge-carrier dynamics. We will also show that there is still no fully coherent picture of the processes in OMHPs and we will indicate the problems to be solved by future research.
  •  
4.
  • Buyanova, Irina, et al. (författare)
  • Dilute nitrides-based nanowires-a promising platform for nanoscale photonics and energy technology
  • 2019
  • Ingår i: Nanotechnology. - : IOP PUBLISHING LTD. - 0957-4484 .- 1361-6528. ; 30:29
  • Forskningsöversikt (refereegranskat)abstract
    • Dilute nitrides are novel III-V-N semiconductor alloys promising for a great variety of applications ranging from nanoscale light emitters and solar cells to energy production via photoelectrochemical reactions and to nano-spintronics. These alloys have become available in the one-dimensional geometry only most recently, thanks to the advances in the nanowire (NW) growth utilizing molecular beam epitaxy. In this review we will summarize growth approaches currently utilized for the fabrication of such novel dilute nitride-based NWs, discuss their structural, defect-related and optical properties, as well as provide several examples of their potential applications.
  •  
5.
  • Schwarz, Mike, et al. (författare)
  • The Schottky barrier transistor in emerging electronic devices
  • 2023
  • Ingår i: Nanotechnology. - 1361-6528 .- 0957-4484. ; 34:35
  • Forskningsöversikt (refereegranskat)abstract
    • This paper explores how the Schottky barrier (SB) transistor is used in a variety of applications and material systems. A discussion of SB formation, current transport processes, and an overview of modeling are first considered. Three discussions follow, which detail the role of SB transistors in high performance, ubiquitous and cryogenic electronics. For high performance computing, the SB typically needs to be minimized to achieve optimal performance and we explore the methods adopted in carbon nanotube technology and two-dimensional electronics. On the contrary for ubiquitous electronics, the SB can be used advantageously in source-gated transistors and reconfigurable field-effect transistors (FETs) for sensors, neuromorphic hardware and security applications. Similarly, judicious use of an SB can be an asset for applications involving Josephson junction FETs.
  •  
6.
  • Zamani, Reza, 1982, et al. (författare)
  • Understanding semiconductor nanostructures via advanced electron microscopy and spectroscopy
  • 2019
  • Ingår i: Nanotechnology. - : IOP Publishing. - 1361-6528 .- 0957-4484. ; 30:26
  • Forskningsöversikt (refereegranskat)abstract
    • Transmission electron microscopy (TEM) offers an ample range of complementary techniques which are able to provide essential information about the physical, chemical and structural properties of materials at the atomic scale, and hence makes a vast impact on our understanding of materials science, especially in the field of semiconductor one-dimensional (1D) nanostructures. Recent advancements in TEM instrumentation, in particular aberration correction and monochromation, have enabled pioneering experiments in complex nanostructure material systems. This review aims to address these understandings through the applications of the methodology for semiconductor nanostructures. It points out various electron microscopy techniques, in particular scanning TEM (STEM) imaging and spectroscopy techniques, with their already-employed or potential applications on 1D nanostructured semiconductors. We keep the main focus of the paper on the electronic and optoelectronic properties of such semiconductors, and avoid expanding it further. In the first part of the review, we give a brief introduction to each of the STEM-based techniques, without detailed elaboration, and mention the recent technological and conceptual developments which lead to novel characterization methodologies. For further reading, we refer the audience to a handful of papers in the literature. In the second part, we highlight the recent examples of application of the STEM methodology on the 1D nanostructure semiconductor materials, especially III-V, II-V, and group IV bare and heterostructure systems. The aim is to address the research questions on various physical properties and introduce solutions by choosing the appropriate technique that can answer the questions. Potential applications will also be discussed, the ones that have already been used for bulk and 2D materials, and have shown great potential and promise for 1D nanostructure semiconductors.
  •  
7.
  • Zhang, Renyun, et al. (författare)
  • A review of the advances in composites/nanocomposites for triboelectric nanogenerators
  • 2022
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 33:21
  • Forskningsöversikt (refereegranskat)abstract
    • Material development is essential when studying triboelectric nanogenerators (TENGs). This importance is because the performance of TENGs is highly dependent on the properties of the utilized triboelectric materials. To obtain more specific properties, composites have been developed that combine the features of their components. According to Google Scholar, 55% of published papers related to triboelectric nanogenerators have utilized or mentioned composites. This number is 34.5% if one searches with the keyword nanocomposites instead of composites. The importance of composites is because they can exhibit new dielectric properties, better mechanical strength, enhanced charge affinities, etc. Therefore, the development of new composites has great importance in TENG studies. In this paper, we review the production of nanocomposites, the types of nanocomposites, and their application in TENG studies. This review gives an overview of how nanocomposites boost the performance of TENGs and provides guidance for future studies. 
  •  
8.
  • Gu, Xiuquan, et al. (författare)
  • ZnO based heterojunctions and their application in environmental photocatalysis
  • 2016
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 27:40
  • Forskningsöversikt (refereegranskat)abstract
    • As an alternative to TiO2 photocatalysts, ZnO exhibits a large potential for photocatalytic (PC) applications in environmental treatments, such as degradation of wastewater, sterilization of drinking water, and air cleaning. However, the efficiency achieved with ZnO to date is far from that expected for commercialization, due to rapid charge recombination, photo-corrosion as well as poor utilization of solar energy. Fortunately, in recent years, a great number of breakthroughs have been achieved in PC performance (including activity and stability) of micro-/ nano-structured ZnO by forming heterojunctions (HJs) with metal nanoparticles (NPs), carbon nanostructures and other semiconductors. In most cases, the improvement of PC performance was ascribed to the better charge separation at the interfaces between ZnO and the other components. Sometimes, the formation of hybrids is also in favor of visible light harvesting. This review summarizes recent advances in the fields of environmental photocatalysis by ZnO based HJs, and especially emphasizes their abilities in degradation of organic pollutants or harmful substances in water. We aim to reveal the mechanism underlying the enhanced PC performance by constructing HJs, and extend the potential of ZnO HJ photocatalysts for future trends, and practical, large-scale applications in environment-related fields.
  •  
9.
  • Willander, Magnus, et al. (författare)
  • Zinc oxide nanorod based photonic devices : recent progress in growth, light emitting diodes and lasers
  • 2009
  • Ingår i: NANOTECHNOLOGY. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 20:33, s. 332001-
  • Forskningsöversikt (refereegranskat)abstract
    • Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal-organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour-liquid-solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro- and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I-V characteristics of ZnO: P nanowire/ZnO:Ga p-n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence characteristics aimed at the development of white LEDs are demonstrated. Although some of the presented LEDs show visible emission for applied biases in excess of 10 V, optimized structures are expected to provide the same emission at much lower voltage. Finally, lasing from ZnO nanorods is briefly reviewed. An example of a recent whispering gallery mode (WGM) lasing from ZnO is demonstrated as a way to enhance the stimulated emission from small size structures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy