SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1361 6528 OR L773:0957 4484 ;pers:(Leifer Klaus)"

Sökning: L773:1361 6528 OR L773:0957 4484 > Leifer Klaus

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hajati, Y, et al. (författare)
  • Improved gas sensing activity in structurally defected bilayer graphene
  • 2012
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 23:50, s. 50550-
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene is a two-dimensional material with a capability of gas sensing, which is here shown to be drastically improved by inducing gentle disorder in the lattice. We report that by using a focused ion beam technique, controlled disorder can be introduced into the graphene structure through Ga + ion irradiation. This disorder leads to an increase in the electrical response of graphene to NO 2 gas molecules by a factor of three in an ambient environment (air). Ab initio density functional calculations indicate that NO 2 molecules bind strongly to Stone–Wales defects, where they modify electronic states close to the Fermi level, which in turn influence the transport properties. The demonstrated gas sensor, utilizing structurally defected graphene, shows faster response, higher conductivity changes and thus higher sensitivity to NO 2 as compared to pristine graphene.
  •  
2.
  • Duan, Tianbo, 1992-, et al. (författare)
  • Towards Ballistic Transport CVD Graphene by Controlled Removal of Polymer Residues
  • 2022
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 33:49, s. 495704-
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymer-assisted wet transfer of chemical vapor deposited (CVD) graphene has achieved great success towards the true potential for large-scale electronic applications, while the lack of an efficient polymer removal method has been regarded as a crucial factor for realizing high carrier mobility in graphene devices. Hereby, we report an efficient and facile method to clean polymer residues on graphene surface by merely employing solvent mixture of isopropanol (IPA) and water (H2O). Raman spectroscopy shows an intact crystal structure of graphene after treatment, and the x-ray photoelectron spectroscopy indicates a significant decrease in the C–O and C=O bond signals, which is mainly attributed to the removal of polymer residues and further confirmed by subsequent atomic force microscopy analysis. More importantly, our gated measurements demonstrate that the proposed approach has resulted in a 3-fold increase of the carrier mobility in CVD graphene with the electron mobility close to 10 000 cm2 V−1 S−1, corresponding to an electron mean free path beyond 100 nm. This intrigues the promising application for this novel method in achieving ballistic transport for CVD graphene devices.
  •  
3.
  • Jafri, Syed Hassan Mujtaba, 1979-, et al. (författare)
  • Nanomolecular electronic devices based on AuNP molecule nanoelectrodes using molecular place-exchange process
  • 2020
  • Ingår i: Nanotechnology. - : IOP PUBLISHING LTD. - 0957-4484 .- 1361-6528. ; 31:22
  • Tidskriftsartikel (refereegranskat)abstract
    • The implementation of electronics applications based on molecular electronics devices is hampered by the difficulty of placing a single or a few molecules with application-specific electronic properties in between metallic nanocontacts. Here, we present a novel method to fabricate 20 nm sized nanomolecular electronic devices (nanoMoED) using a molecular place-exchange process of nonconductive short alkyl thiolates with various short chain conductive oligomers. After the successful place-exchange with short-chain conjugated oligomers in the nanoMoED devices, a change in device resistance of up to four orders of magnitude for 4,4 '-biphenyldithiol (BPDT), and up to three orders of magnitude for oligo phenylene-ethynylene (OPE), were observed. The place-exchange process in nanoMoEDs are verified by measuring changes in device resistance during repetitive place-exchange processes between conductive and nonconductive molecules and surface-enhanced Raman spectroscopy. This opens vast possibilities for the fabrication and application of nanoMoED devices with a large variety of molecules.
  •  
4.
  • Sher, Omer, et al. (författare)
  • Analysis of molecular ligand functionalization process in nano-molecular electronic devices containing densely packed nano-particle functionalization shells
  • 2022
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 33:25
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular electronic devices based on few and single-molecules have the advantage that the electronic signature of the device is directly dependent on the electronic structure of the molecules as well as of the electrode-molecule junction. In this work, we use a two-step approach to synthesise functionalized nanomolecular electronic devices (nanoMoED). In first step we apply an organic solvent-based gold nanoparticle (AuNP) synthesis method to form either a 1-dodecanethiol or a mixed 1-dodecanethiol/omega-tetraphenyl ether substituted 1-dodecanethiol ligand shell. The functionalization of these AuNPs is tuned in a second step by a ligand functionalization process where biphenyldithiol (BPDT) molecules are introduced as bridging ligands into the shell of the AuNPs. From subsequent structural analysis and electrical measurements, we could observe a successful molecular functionalization in nanoMoED devices as well as we could deduce that differences in electrical properties between two different device types are related to the differences in the molecular functionalization process for the two different AuNPs synthesized in first step. The same devices yielded successful NO2 gas sensing. This opens the pathway for a simplified synthesis/fabrication of molecular electronic devices with application potential.
  •  
5.
  • Blom, Tobias, et al. (författare)
  • Fabrication and characterization of highly reproducible, high resistance nanogaps made by focused ion beam milling
  • 2007
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 18:28, s. 285301-
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoelectrodes were fabricated combining photolithography, electron beam lithography and focused ion beam milling allowing for large scale integration and nanoengineering of the electrode properties. The structure determination by transmission and scanning electron microscopy showed a highly reproducible gap width. The atomic scale electrode structure was characterized using scanning and transmission electron microscopy. The nanogap resistances were found to be the highest hitherto reported for nanogaps, namely in the 300–1300 TΩ range. Gold nanoparticles were trapped by ac dielectrophoresis, and the electrodes were shown to be stable enough to endure empty gap voltages as high as 5 V as well as currents high enough to induce fusing of trapped nanoparticles.
  •  
6.
  • Jafri, S. Hassan M., et al. (författare)
  • Assessment of a nanoparticle bridge platform for molecular electronics measurements
  • 2010
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 21:43, s. 435204-
  • Tidskriftsartikel (refereegranskat)abstract
    • A combination of electron beam lithography, photolithography and focused ion beam milling was used to create a nanogap platform, which was bridged by gold nanoparticles in order to make electrical measurements and assess the platform under ambient conditions. Non-functionalized electrodes were tested to determine the intrinsic response of the platform and it was found that creating devices in ambient conditions requires careful cleaning and awareness of the contributions contaminants may make to measurements. The platform was then used to make measurements on octanethiol (OT) and biphenyldithiol (BPDT) molecules by functionalizing the nanoelectrodes with the molecules prior to bridging the nanogap with nanoparticles. Measurements on OT show that it is possible to make measurements on relatively small numbers of molecules, but that a large variation in response can be expected when one of the metal-molecule junctions is physisorbed, which was partially explained by attachment of OT molecules to different sites on the surface of the Au electrode using a density functional theory calculation. On the other hand, when dealing with BPDT, high yields for device creation are very difficult to achieve under ambient conditions. Significant hysteresis in the I-V curves of BPDT was also observed, which was attributed primarily to voltage induced changes at the interface between the molecule and the metal.
  •  
7.
  • van Sebille, M., et al. (författare)
  • Shrinking of silicon nanocrystals embedded in an amorphous silicon oxide matrix during rapid thermal annealing in a forming gas atmosphere
  • 2016
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 27:36
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the effect of hydrogen on the crystallization process of silicon nanocrystals embedded in a silicon oxide matrix. We show that hydrogen gas during annealing leads to a lower sub-band gap absorption, indicating passivation of defects created during annealing. Samples annealed in pure nitrogen show expected trends according to crystallization theory. Samples annealed in forming gas, however, deviate from this trend. Their crystallinity decreases for increased annealing time. Furthermore, we observe a decrease in the mean nanocrystal size and the size distribution broadens, indicating that hydrogen causes a size reduction of the silicon nanocrystals.
  •  
8.
  • Welch, Ken, 1968-, et al. (författare)
  • Enabling measurements of low-conductance single molecules using gold nanoelectrodes
  • 2011
  • Ingår i: Nanotechnology. - : Institute of Physics (IOP). - 0957-4484 .- 1361-6528. ; 22:12, s. 125707-
  • Tidskriftsartikel (refereegranskat)abstract
    • A high resistance nanogap platform was used to trap and electrically characterize 30 nm thiolated double-stranded DNA molecules. High resolution scanning electron microscopy was also used to image the trapped DNA strands. It was found that the surface state of the electrodes and underlying substrate could influence the measurements of trapped molecules when the measured resistances were on the order of TΩ or greater. Hydrophilic surfaces gave rise to larger leakage currents that could potentially mask the underlying signals from molecules positioned in the nanogap. Finally, the careful handling of the samples and control of the environment is essential to avoid surface charging of the oxide substrate layer as these parasitic charges affect electrical measurements of the nanogap. The presented results thus outline some important considerations when making low-conductance measurements on molecules and should prove useful for the characterization of molecules in molecular electronics or sensors employing nanogap platforms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy