SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1432 0533 ;pers:(Shaw Leslie M)"

Sökning: L773:1432 0533 > Shaw Leslie M

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chapuis, Julien, et al. (författare)
  • Genome-wide, high-content siRNA screening identifies the Alzheimer’s genetic risk factor FERMT2 as a major modulator of APP metabolism
  • 2017
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 133:6, s. 955-966
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWASs) have identified 19 susceptibility loci for Alzheimer’s disease (AD). However, understanding how these genes are involved in the pathophysiology of AD is one of the main challenges of the “post-GWAS” era. At least 123 genes are located within the 19 susceptibility loci; hence, a conventional approach (studying the genes one by one) would not be time- and cost-effective. We therefore developed a genome-wide, high-content siRNA screening approach and used it to assess the functional impact of gene under-expression on APP metabolism. We found that 832 genes modulated APP metabolism. Eight of these genes were located within AD susceptibility loci. Only FERMT2 (a β3-integrin co-activator) was also significantly associated with a variation in cerebrospinal fluid Aβ peptide levels in 2886 AD cases. Lastly, we showed that the under-expression of FERMT2 increases Aβ peptide production by raising levels of mature APP at the cell surface and facilitating its recycling. Taken as a whole, our data suggest that FERMT2 modulates the AD risk by regulating APP metabolism and Aβ peptide production.
  •  
2.
  • Deming, Yuetiva, et al. (författare)
  • Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers
  • 2017
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 133:5, s. 839-856
  • Tidskriftsartikel (refereegranskat)abstract
    • More than 20 genetic loci have been associated with risk for Alzheimer’s disease (AD), but reported genome-wide significant loci do not account for all the estimated heritability and provide little information about underlying biological mechanisms. Genetic studies using intermediate quantitative traits such as biomarkers, or endophenotypes, benefit from increased statistical power to identify variants that may not pass the stringent multiple test correction in case–control studies. Endophenotypes also contain additional information helpful for identifying variants and genes associated with other aspects of disease, such as rate of progression or onset, and provide context to interpret the results from genome-wide association studies (GWAS). We conducted GWAS of amyloid beta (Aβ42), tau, and phosphorylated tau (ptau181) levels in cerebrospinal fluid (CSF) from 3146 participants across nine studies to identify novel variants associated with AD. Five genome-wide significant loci (two novel) were associated with ptau181, including loci that have also been associated with AD risk or brain-related phenotypes. Two novel loci associated with Aβ42 near GLIS1 on 1p32.3 (β = −0.059, P = 2.08 × 10−8) and within SERPINB1 on 6p25 (β = −0.025, P = 1.72 × 10−8) were also associated with AD risk (GLIS1: OR = 1.105, P = 3.43 × 10−2), disease progression (GLIS1: β = 0.277, P = 1.92 × 10−2), and age at onset (SERPINB1: β = 0.043, P = 4.62 × 10−3). Bioinformatics indicate that the intronic SERPINB1 variant (rs316341) affects expression of SERPINB1 in various tissues, including the hippocampus, suggesting that SERPINB1 influences AD through an Aβ-associated mechanism. Analyses of known AD risk loci suggest CLU and FERMT2 may influence CSF Aβ42 (P = 0.001 and P = 0.009, respectively) and the INPP5D locus may affect ptau181 levels (P = 0.009); larger studies are necessary to verify these results. Together the findings from this study can be used to inform future AD studies.
  •  
3.
  • Deming, Yuetiva, et al. (författare)
  • Sex-specific genetic predictors of Alzheimer’s disease biomarkers
  • 2018
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 136:6, s. 857-872
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrospinal fluid (CSF) levels of amyloid-β 42 (Aβ42) and tau have been evaluated as endophenotypes in Alzheimer’s disease (AD) genetic studies. Although there are sex differences in AD risk, sex differences have not been evaluated in genetic studies of AD endophenotypes. We performed sex-stratified and sex interaction genetic analyses of CSF biomarkers to identify sex-specific associations. Data came from a previous genome-wide association study (GWAS) of CSF Aβ42 and tau (1527 males, 1509 females). We evaluated sex interactions at previous loci, performed sex-stratified GWAS to identify sex-specific associations, and evaluated sex interactions at sex-specific GWAS loci. We then evaluated sex-specific associations between prefrontal cortex (PFC) gene expression at relevant loci and autopsy measures of plaques and tangles using data from the Religious Orders Study and Rush Memory and Aging Project. In Aβ42, we observed sex interactions at one previous and one novel locus: rs316341 within SERPINB1 (p = 0.04) and rs13115400 near LINC00290 (p = 0.002). These loci showed stronger associations among females (β = − 0.03, p = 4.25 × 10−8; β = 0.03, p = 3.97 × 10−8) than males (β = − 0.02, p = 0.009; β = 0.01, p = 0.20). Higher levels of expression of SERPINB1, SERPINB6, and SERPINB9 in PFC was associated with higher levels of amyloidosis among females (corrected p values < 0.02) but not males (p > 0.38). In total tau, we observed a sex interaction at a previous locus, rs1393060 proximal to GMNC (p = 0.004), driven by a stronger association among females (β = 0.05, p = 4.57 × 10−10) compared to males (β = 0.02, p = 0.03). There was also a sex-specific association between rs1393060 and tangle density at autopsy (pfemale = 0.047; pmale = 0.96), and higher levels of expression of two genes within this locus were associated with lower tangle density among females (OSTN p = 0.006; CLDN16 p = 0.002) but not males (p ≥ 0.32). Results suggest a female-specific role for SERPINB1 in amyloidosis and for OSTN and CLDN16 in tau pathology. Sex-specific genetic analyses may improve understanding of AD’s genetic architecture.
  •  
4.
  • Portelius, Erik, 1977, et al. (författare)
  • Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology.
  • 2018
  • Ingår i: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 136:3, s. 363-376
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurogranin (Ng) is a post-synaptic protein that previously has been shown to be a biomarker for synaptic function when measured in cerebrospinal fluid (CSF). The CSF concentration of Ng is increased in Alzheimer's disease dementia (ADD),and even in the pre-dementia stage. In this prospective study, we used an enzyme-linked immunosorbent assay that quantifies Ng in CSF to test the performance of Ng as a marker of synaptic function. In 915 patients, CSF Ng was evaluated across several different neurodegenerative diseases. Of these 915 patients, 116 had a neuropathologically confirmed definitive diagnosis and the relation between CSF Ng and topographical distribution of different pathologies in the brain was evaluated. CSF Ng was specifically increased in ADD compared to eight other neurodegenerative diseases, including Parkinson's disease (p<0.0001), frontotemporal dementia (p<0.0001), and amyotrophic lateral sclerosis (p=0.0002). Similar results were obtained in neuropathologically confirmed cases. Using a biomarker index to evaluate whether CSF Ng contributed diagnostic information to the core AD CSF biomarkers (amyloid β (Aβ), t-tau, and p-tau), we show that Ng significantly increased the discrimination between AD and several other disorders. Higher CSF Ng levels were positively associated with greater Aβ neuritic plaque (Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neuritic plaque score, p=0.0002) and tau tangle pathology (Braak neurofibrillary tangles staging, p=0.0007) scores. In the hippocampus and amygdala, two brain regions heavily affected in ADD with high expression of Ng, CSF Ng was associated with plaque (p=0.0006 and p<0.0001), but not with tangle, α-synuclein, or TAR DNA-binding protein 43 loads. These data support that CSF Ng is increased specifically in ADD, that high CSF Ng concentrations likely reflect synaptic dysfunction and that CSF Ng is associated with β-amyloid plaque pathology.
  •  
5.
  • Shaw, Leslie M, et al. (författare)
  • Qualification of the analytical and clinical performance of CSF biomarker analyses in ADNI.
  • 2011
  • Ingår i: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 121:5, s. 597-609
  • Tidskriftsartikel (refereegranskat)abstract
    • The close correlation between abnormally low pre-mortem cerebrospinal fluid (CSF) concentrations of amyloid-β1-42 (Aβ(1-42)) and plaque burden measured by amyloid imaging as well as between pathologically increased levels of CSF tau and the extent of neurodegeneration measured by MRI has led to growing interest in using these biomarkers to predict the presence of AD plaque and tangle pathology. A challenge for the widespread use of these CSF biomarkers is the high variability in the assays used to measure these analytes which has been ascribed to multiple pre-analytical and analytical test performance factors. To address this challenge, we conducted a seven-center inter-laboratory standardization study for CSF total tau (t-tau), phospho-tau (p-tau(181)) and Aβ(1-42) as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Aliquots prepared from five CSF pools assembled from multiple elderly controls (n = 3) and AD patients (n = 2) were the primary test samples analyzed in each of three analytical runs by the participating laboratories using a common batch of research use only immunoassay reagents (INNO-BIA AlzBio3, xMAP technology, from Innogenetics) on the Luminex analytical platform. To account for the combined effects on overall precision of CSF samples (fixed effect), different laboratories and analytical runs (random effects), these data were analyzed by mixed-effects modeling with the following results: within center %CV 95% CI values (mean) of 4.0-6.0% (5.3%) for CSF Aβ(1-42); 6.4-6.8% (6.7%) for t-tau and 5.5-18.0% (10.8%) for p-tau(181) and inter-center %CV 95% CI range of 15.9-19.8% (17.9%) for Aβ(1-42), 9.6-15.2% (13.1%) for t-tau and 11.3-18.2% (14.6%) for p-tau(181). Long-term experience by the ADNI biomarker core laboratory replicated this degree of within-center precision. Diagnostic threshold CSF concentrations for Aβ(1-42) and for the ratio t-tau/Aβ(1-42) were determined in an ADNI independent, autopsy-confirmed AD cohort from whom ante-mortem CSF was obtained, and a clinically defined group of cognitively normal controls (NCs) provides statistically significant separation of those who progressed from MCI to AD in the ADNI study. These data suggest that interrogation of ante-mortem CSF in cognitively impaired individuals to determine levels of t-tau, p-tau(181) and Aβ(1-42), together with MRI and amyloid imaging biomarkers, could replace autopsy confirmation of AD plaque and tangle pathology as the "gold standard" for the diagnosis of definite AD in the near future.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy