SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1432 9840 OR L773:1435 0629 ;lar1:(hig)"

Sökning: L773:1432 9840 OR L773:1435 0629 > Högskolan i Gävle

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Colding, Johan, et al. (författare)
  • The Role of Golf Courses in Biodiversity Conservation and Ecosystem Management
  • 2009
  • Ingår i: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 12, s. 191-206
  • Tidskriftsartikel (refereegranskat)abstract
    • We assessed the ecological value of golf courses based on a quantitative synthesis of studies in the scientific literature that have measured and compared biota on golf courses to that of biota in green-area habitats related to other land uses. We found that golf courses had higher ecological value in 64% of comparative cases. This pattern was consistent also for comparisons based on measures of species richness, as well as for comparisons of overall measures of birds and insectsthe fauna groups most widely examined in the studies. Many golf courses also contribute to the preservation of fauna of conservation concern. More broadly, we found that the ecological value of golf courses significantly decreases with land types having low levels of anthropogenic impact, like natural and nature-protected areas. Conversely, the value of golf courses significantly increases with land that has high levels of anthropogenic impact, like agricultural and urban lands. From an ecosystem management perspective, golf courses represent a promising measure for restoring and enhancing biodiversity in ecologically simplified landscapes. Furthermore, the review suggests that golf courses hold a real potential to be designed and managed to promote critical ecosystem services, like pollination and natural pest control, providing an opportunity for joint collaboration among conservation, restoration and recreational interests.
  •  
2.
  • Majdi, Hooshang, et al. (författare)
  • Fine Root Production and Turnover in a Norway Spruce Stand in Northern Sweden : Effects of Nitrogen and Water Manipulation
  • 2005
  • Ingår i: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 8:2, s. 191-199
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract: Fine root length production, biomass production, and turnover in forest floor and mineral soil (0-30 cm) layers were studied in relation to irrigated (1) and irrigated-fertilized (IL) treatments in a Norway spruce stand in northern Sweden over a 2-year period. Fine roots (<1 mm) of both spruce and understory vegetation were studied. Mini-rhizotrons were used to estimate fine root length production and turnover, and soil cores were used to estimate standing biomass. Turnover was estimated as both the inverse of root longevity (RTL) and the ratio of annual root length production to observed root length (RTR). RTR values of spruce roots in the forest floor in I and IL plots were 0.6 and 0.5 y(-1), respectively, whereas the corresponding values for RTL were 0.8 and 0.9 y(-1). In mineral soil, corresponding values for I, IL, and control (C) plots were 1.2, 1.2, and 0.9 y(-1) (RTR) and 0.9, 1.1, and 1 y(-1) (RTL). RTR and RTL values of understory vegetation roots were 1 and 1.1 y(-1), respectively. Spruce root length production in both the forest floor and the mineral soil in I plots was higher than in IL plots. The IL-treated plots gave the highest estimates of spruce fine root biomass production in the forest floor, but, for the mineral soil, the estimates obtained for the I plots were the highest. The understory vegetation fine root production in the I and IL plots was similar for both the forest floor and the mineral soil and higher (for both layers) than in C plots. Nitrogen (N) turnover in the forest floor and mineral soil layers (summed) via spruce roots in IL, I, and C plots amounted to 2.4, 2.1, and 1.3 g N m(-2) y(-1), and the corresponding values for field vegetation roots were 0.6, 0.5, and 0.3 g N m(-2) y(-1). It was concluded that fertilization increases standing root biomass, root production, and N turnover of spruce roots in both the forest floor and mineral soil. Data on understory vegetation roots are required for estimating carbon budgets in model studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Andersson, P (1)
Folke, Carl (1)
Colding, Johan (1)
Majdi, Hooshang (1)
Lärosäte
Stockholms universitet (1)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy