SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1432 9840 OR L773:1435 0629 ;lar1:(slu)"

Sökning: L773:1432 9840 OR L773:1435 0629 > Sveriges Lantbruksuniversitet

  • Resultat 1-10 av 57
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ackermann, Kathrin, et al. (författare)
  • N-2 Fixation in Feather Mosses is a Sensitive Indicator of N Deposition in Boreal Forests
  • 2012
  • Ingår i: Ecosystems. - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 15:6, s. 986-998
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitrogen (N) fixation in the feather moss-cyanobacteria association represents a major N source in boreal forests which experience low levels of N deposition; however, little is known about the effects of anthropogenic N inputs on the rate of fixation of atmospheric N-2 in mosses and the succeeding effects on soil nutrient concentrations and microbial community composition. We collected soil samples and moss shoots of Pleurozium schreberi at six distances along busy and remote roads in northern Sweden to assess the influence of road-derived N inputs on N-2 fixation in moss, soil nutrient concentrations and microbial communities. Soil nutrients were similar between busy and remote roads; N-2 fixation was higher in mosses along the remote roads than along the busy roads and increased with increasing distance from busy roads up to rates of N-2 fixation similar to remote roads. Throughfall N was higher in sites adjacent to the busy roads but showed no distance effect. Soil microbial phospholipid fatty acid (PLFA) composition exhibited a weak pattern regarding road type. Concentrations of bacterial and total PLFAs decreased with increasing distance from busy roads, whereas fungal PLFAs showed no distance effect. Our results show that N-2 fixation in feather mosses is highly affected by N deposition, here derived from roads in northern Sweden. Moreover, as other measured factors showed only weak differences between the road types, atmospheric N-2 fixation in feather mosses represents a highly sensitive indicator for increased N loads to natural systems.
  •  
2.
  • Angeler, David (författare)
  • Elevated Atmospheric CO2 Increases Root Exudation of Carbon in Wetlands: Results from the First Free-Air CO2 Enrichment Facility (FACE) in a Marshland
  • 2018
  • Ingår i: Ecosystems. - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 21, s. 852-867
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments employing free-air CO2 enrichment (FACE) facilities have indicated that elevated atmospheric carbon dioxide (eCO(2)) stimulates growth in diverse terrestrial ecosystems. Studies of the effects of eCO(2) on wetland plants have indicated a similar response, but these studies were mostly performed in growth chambers. We conducted a 2-year FACE experiment [CO2 ae 582 A mu mol mol(-1)] in a marsh in Spain to test whether the common reed (Phragmites australis) responds to carbon enrichment, as previously reported in other macrophytes. More specifically, we tested the effect of eCO(2) on P. australis growth, photosynthesis, transpiration, and biomass, its effect on modifying plant and soil ratios of carbon, nitrogen, and phosphorus, and whether the strong environmental variability of this wetland modulates these responses. Our findings show that effects of eCO(2) in this wetland environment are more complex than previously believed, probably due to hydrological effects. The effects of eCO(2) on reed plants were cumulative and manifested at the end of the growing season as increased 38-44% instantaneous transpiration efficiency (ratio of net photosynthesis to transpiration), which was dependent on plant age. However, this increase did not result in a significant increase in biomass, because of excessive root exudation of carbon. These observations contrast with previous observations of wetland plants to increased atmospheric CO2 in growth chambers and shed new light on the role of wetland plants as a carbon sink in the face of global climate change. The combined effects of water stress, eCO(2), and soil carbon processes must be considered when assessing the function of wetlands as a carbon sink under global change scenarios.
  •  
3.
  • Angeler, David (författare)
  • Panarchy: Theory and Application
  • 2014
  • Ingår i: Ecosystems. - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 17, s. 578-589
  • Tidskriftsartikel (refereegranskat)abstract
    • The concept of panarchy provides a framework that characterizes complex systems of people and nature as dynamically organized and structured within and across scales of space and time. It has been more than a decade since the introduction of panarchy. Over this period, its invocation in peer-reviewed literature has been steadily increasing, but its use remains primarily descriptive and abstract. Here, we discuss the use of the concept in the literature to date, highlight where the concept may be useful, and discuss limitations to the broader applicability of panarchy theory for research in the ecological and social sciences. Finally, we forward a set of testable hypotheses to evaluate key propositions that follow from panarchy theory.
  •  
4.
  • Angeler, David, et al. (författare)
  • Spatial Patterns and Functional Redundancies in a Changing Boreal Lake Landscape
  • 2015
  • Ingår i: Ecosystems. - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 18, s. 889-902
  • Tidskriftsartikel (refereegranskat)abstract
    • Global transformations extend beyond local habitats; therefore, larger-scale approaches are needed to assess community-level responses and resilience to unfolding environmental changes. Using long-term data (1996-2011), we evaluated spatial patterns and functional redundancies in the littoral invertebrate communities of 85 Swedish lakes, with the objective of assessing their potential resilience to environmental change at regional scales (that is, spatial resilience). Multivariate spatial modeling was used to differentiate groups of invertebrate species exhibiting spatial patterns in composition and abundance (that is, deterministic species) from those lacking spatial patterns (that is, stochastic species). We then determined the functional feeding attributes of the deterministic and stochastic invertebrate species, to infer resilience. Between one and three distinct spatial patterns in invertebrate composition and abundance were identified in approximately one-third of the species; the remainder were stochastic. We observed substantial differences in metrics between deterministic and stochastic species. Functional richness and diversity decreased over time in the deterministic group, suggesting a loss of resilience in regional invertebrate communities. However, taxon richness and redundancy increased monotonically in the stochastic group, indicating the capacity of regional invertebrate communities to adapt to change. Our results suggest that a refined picture of spatial resilience emerges if patterns of both the deterministic and stochastic species are accounted for. Spatially extensive monitoring may help increase our mechanistic understanding of community-level responses and resilience to regional environmental change, insights that are critical for developing management and conservation agendas in this current period of rapid environmental transformation.
  •  
5.
  • Austin, Åsa N., et al. (författare)
  • Synergistic Effects of Rooted Aquatic Vegetation and Drift Wrack on Ecosystem Multifunctionality
  • 2021
  • Ingår i: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 24:7, s. 1670-1686
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecosystem multifunctionality is an increasingly popular concept used to approximate multifaceted ecosystem functioning, which in turn may help advance ecosystem-based management. However, while experimental studies have shown a positive effect of diversity on multifunctionality, observational studies from natural systems-particularly aquatic-are scarce. Here, we tested the relative importance of species richness and cover of rooted aquatic vegetation, as well as cover of the loose-lying form of the macroalgae bladderwrack (Fucus vesiculosus), for ecosystem multifunctionality in shallow bays along the western Baltic Sea coast. We estimated multifunctionality based on four indicators of functions that support ecosystem services: recruitment of large predatory fish, grazer biomass, inverted 'nuisance' algal biomass, and water clarity. Piecewise path analysis showed that multifunctionality was driven by high cover of rooted aquatic vegetation and bladderwrack, particularly when the two co-occurred. This synergistic effect was nearly three times as strong as a negative effect of land-derived nitrogen loading. Species richness of aquatic vegetation indirectly benefitted multifunctionality by increasing vegetation cover. Meanwhile, high bladderwrack cover tended to decrease vegetation species richness, indicating that bladderwrack has both positive and negative effects on multifunctionality. We conclude that managing for dense and diverse vegetation assemblages may mitigate effects of anthropogenic pressures (for example, eutrophication) and support healthy coastal ecosystems that provide a range of benefits. To balance the exploitation of coastal ecosystems and maintain their multiple processes and services, management therefore needs to go beyond estimation of vegetation cover and consider the diversity and functional types of aquatic vegetation.
  •  
6.
  • Axelsson, Petter, et al. (författare)
  • Can leaf litter from genetically modified trees affect aquatic ecosystems?
  • 2010
  • Ingår i: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 13:7, s. 1049-1059
  • Tidskriftsartikel (refereegranskat)abstract
    • In addition to potential benefits, biotechnology in silviculture may also be associated with environmental considerations, including effects on organisms associated with the living tree and on ecosystems and processes dependent on tree residue. We examined whether genetic modification of lignin characteristics (CAD and COMT) in Populus sp. affected leaf litter quality, the decomposition of leaf litter, and the assemblages of aquatic insects colonizing the litter in three natural streams. The decomposition of leaf litter from one of the genetically modified (GM) lines (CAD) was affected in ways that were comparable over streams and harvest dates. After 84 days in streams, CAD-litter had lost approximately 6.1% less mass than the non-GM litter. Genetic modification also affected the concentration of phenolics and carbon in the litter but this only partially explained the decomposition differences, suggesting that other factors were also involved. Insect community analyses comparing GM and non-GM litter showed no significant differences, and the two GM litters showed differences only in the 84-day litterbags. The total abundance and species richness of insects were also similar on GM and non-GM litter. The results presented here suggest that genetic modifications in trees can influence litter quality and thus have a potential to generate effects that can cross ecosystem boundaries and influence ecosystem processes not directly associated with the tree. Overall, the realized ecological effects of the GM tree varieties used here were nevertheless shown to be relatively small.
  •  
7.
  • Baho, Didier Ludovic, et al. (författare)
  • Ecological Memory of Historical Contamination Influences the Response of Phytoplankton Communities
  • 2021
  • Ingår i: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 24:7, s. 1591-1607
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecological memory (EM) recognizes the importance of previous stress encounters in promoting community tolerance and thereby enhances ecosystem stability, provided that gained tolerances are preserved during non-stress periods. Drawing from this concept, we hypothesized that the recruitment of tolerant species can be facilitated by imposing an initial sorting process (conditioning) during the early stages of community assembly, which should result in higher production (biomass development and photosynthetic efficiency) and stable community composition. To test this, phytoplankton resting stages were germinated from lake sediments originating from two catchments that differed in contamination history: one impacted by long-term herbicides and pesticides exposures (historically contaminated lake) from an agricultural catchment compared to a low-impacted one (near-pristine lake) from a forested catchment. Conditioning was achieved by adding an herbicide (Isoproturon, which was commonly used in the catchment of the historically contaminated lake) during germination. Afterward, the communities obtained from germination were exposed to an increasing gradient of Isoproturon. As hypothesized, upon conditioning, the phytoplankton assemblages from the historically contaminated lake were able to rapidly restore photosynthetic efficiency (p > 0.01) and became structurally (community composition) more resistant to Isoproturon. The communities of the near-pristine lake did not yield these positive effects regardless of conditioning, supporting that EM was a unique attribute of the historically stressed ecosystem. Moreover, assemblages that displayed higher structural resistance concurrently yielded lower biomass, indicating that benefits of EM in increasing structural stability may trade-off with production. Our results clearly indicate that EM can foster ecosystem stability to a recurring stressor.
  •  
8.
  • Bishop, Kevin (författare)
  • Upscaling Nitrogen Removal Capacity from Local Hotspots to Low Stream Orders' Drainage Basins
  • 2015
  • Ingår i: Ecosystems. - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 18, s. 1101-1120
  • Tidskriftsartikel (refereegranskat)abstract
    • Denitrification is the main process removing nitrate in river drainage basins and buffer input from agricultural land and limits aquatic ecosystem pollution. However, the identification of denitrification hotspots (for example, riparian zones), their role in a landscape context and the evolution of their overall removal capacity at the drainage basin scale are still challenging. The main approaches used (that is, mass balance method, denitrification proxies, and potential wetted areas) suffer from methodological drawbacks. We review these approaches and the key frameworks that have been proposed to date to formalize the understanding of the mechanisms driving denitrification: (i) Diffusion versus advection pathways of nitrate transfer, (ii) the biogeochemical hotspot, and (iii) the Damkohler ratio. Based on these frameworks, we propose to use high-resolution mapping of catchment topography and landscape pattern to define both potential denitrification sites and the dynamic hydrologic modeling at a similar spatial scale (< 10 km(2)). It would allow the quantification of cumulative denitrification activity at the small catchment scale, using spatially distributed Damkohler and Peclet numbers and biogeochemical proxies. Integration of existing frameworks with new tools and methods offers the potential for significant breakthroughs in the quantification and modeling of denitrification in small drainage basins. This can provide a basis for improved protection and restoration of surface water and groundwater quality.
  •  
9.
  • Bommarco, Riccardo (författare)
  • Enhancing Soil Organic Matter as a Route to the Ecological Intensification of European Arable Systems
  • 2018
  • Ingår i: Ecosystems. - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 21, s. 1404-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil organic matter (SOM) is declining in most agricultural ecosystems, impacting multiple ecosystem services including erosion and flood prevention, climate and greenhouse gas regulation as well as other services that underpin crop production, such as nutrient cycling and pest control. Ecological intensification aims to enhance crop productivity by including regulating and supporting ecosystem service management into agricultural practices. We investigate the potential for increased SOM to support the ecological intensification of arable systems by reducing the need for nitrogen fertiliser application and pest control. Using a large-scale European field trial implemented across 84 fields in 5 countries, we tested whether increased SOM (using soil organic carbon as a proxy) helps recover yield in the absence of conventional nitrogen fertiliser and whether this also supports crops less favourable to key aphid pests. Greater SOM increased yield by 10%, but did not offset nitrogen fertiliser application entirely, which improved yield by 30%. Crop pest responses depended on species: Metopolophium dirhodum were more abundant in fertilised plots with high crop biomass, and although population growth rates of Sitobion avenae were enhanced by nitrogen fertiliser application in a cage trial, field populations were not affected. We conclude that under increased SOM and reduced fertiliser application, pest pressure can be reduced, while partially compensating for yield deficits linked to fertiliser reduction. If the benefits of reduced fertiliser application and increased SOM are considered in a wider environmental context, then a yield cost may become acceptable. Maintaining or increasing SOM is critical for achieving ecological intensification of European cereal production.
  •  
10.
  • Brunet, Jörg (författare)
  • Context-Dependency of Agricultural Legacies in Temperate Forest Soils
  • 2019
  • Ingår i: Ecosystems. - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 22, s. 781-795
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic activities have affected forests for centuries, leading to persistent legacies. Observations of agricultural legacies on forest soil properties have been site specific and contrasting. Sites and regions vary along gradients in intrinsic soil characteristics, phosphorus (P) management and nitrogen (N) deposition which could affect the magnitude of soil property responses to past cultivation. A single investigation along these gradients could reconcile contradictions and elucidate context-dependency in agricultural legacies. We analysed soil from 24 paired post-agricultural (established after approx. 1950) and ancient (in existence before 1850) forests in eight European regions. Post-agricultural forest soil had higher pH, higher P-concentration and lower carbon (C) to N ratio compared to ancient forest. Importantly, gradients of soil characteristics, regional P surplus and N deposition affected the magnitude of these legacies. First, we found that three soil groups, characterising inherent soil fertility, determined extractable base cations, pH and concentrations of total N, organic C and total P. Second, regions with greater current P surplus from agriculture correlated with the highest P legacy in post-agricultural forests. Finally, we found that N deposition lowered pH across forests and increased total N and organic C concentrations in post-agricultural forest. These results suggest that (1) legacies from cultivation consistently determine soil properties in post-agricultural forest and (2) these legacies depend on regional and environmental context, including soil characteristics, regional P surplus and N deposition. Identifying gradients that influence the magnitude of agricultural legacies is key to informing how, where and why forest ecosystems respond to contemporary environmental change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 57
Typ av publikation
tidskriftsartikel (55)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (57)
Författare/redaktör
Laudon, Hjalmar (5)
Bishop, Kevin (4)
Angeler, David (3)
Futter, Martyn (3)
Nilsson, Mats (2)
Kothawala, Dolly (2)
visa fler...
Nordin, Annika (2)
Köhler, Stephan (2)
Gardeström, Johanna (1)
Eriksson, Lars (1)
Lundqvist, Hans (1)
DeLuca, Thomas H. (1)
Dorrepaal, Ellen (1)
Kortelainen, Pirkko (1)
Peichl, Matthias (1)
Metcalfe, Dan (1)
Wang, Meng (1)
Brunet, Jörg (1)
Ackermann, Kathrin (1)
Zackrisson, Olle (1)
Rousk, Johannes (1)
Jones, David L. (1)
Weyhenmeyer, Gesa A. (1)
Hessen, Dag O. (1)
Rundgren, Mats (1)
Witzell, Johanna (1)
Jansson, Mats (1)
Nilsson, Christer (1)
Bommarco, Riccardo (1)
Hambäck, Peter A. (1)
Bergström, Ulf (1)
Hjelm, Joakim (1)
Hentati Sundberg, Jo ... (1)
Hammarlund, Dan (1)
Boonstra, Wiebren J. (1)
Stark, Sari (1)
Sundberg, Sebastian (1)
Bååth, Erland (1)
Jutterström, Sara (1)
Jönsson, Anna Maria (1)
Stadmark, Johanna (1)
Olsson, Bengt (1)
Lundmark, Tomas (1)
Dahlgren, Jonas (1)
Marquer, Laurent (1)
Feit, Benjamin (1)
Meili, Markus (1)
Sobek, Sebastian (1)
Ågren, Anneli (1)
Allard, Anna (1)
visa färre...
Lärosäte
Umeå universitet (16)
Uppsala universitet (6)
Stockholms universitet (5)
Karlstads universitet (1)
visa fler...
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (57)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (45)
Lantbruksvetenskap (30)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy