SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1432 9840 OR L773:1435 0629 ;pers:(Nilsson Christer)"

Sökning: L773:1432 9840 OR L773:1435 0629 > Nilsson Christer

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nilsson, Christer, et al. (författare)
  • Boreal riparian vegetation under climate change
  • 2013
  • Ingår i: Ecosystems (New York. Print). - New York, NY, USA : Springer. - 1432-9840 .- 1435-0629. ; 16:3, s. 401-410
  • Tidskriftsartikel (refereegranskat)abstract
    • Riparian zones in boreal areas such as humid landscapes on minerogenic soils are characterized by diverse, productive, and dynamic vegetation which will rapidly react to climate change. Climate-change models predict that in most parts of the boreal region these zones will be affected by various combinations of increased temperature, less seasonal variation in runoff, increased average discharge, changes in groundwater supply, and a more dynamic ice regime. Increasing temperatures will favor invasion of exotic species whereas species losses are likely to be minor. The hydrologic changes will cause a narrowing of the riparian zone and, therefore, locally reduce species richness whereas effects on primary production are more difficult to predict. More shifts between freezing and thawing during winter will lead to increased dynamics of ice formation and ice disturbance, potentially fostering a more dynamic and species-rich riparian vegetation. Restoration measures that increase water retention and shade, and that reduce habitats for exotic plant species adjacent to rivers can be applied especially in streams and rivers that have been channelized or deprived of their riparian forest to reduce the effects of climate change on riparian ecosystems.
  •  
2.
  • Nilsson, Christer, et al. (författare)
  • Ecological Forecasting and the Urbanization of Stream Ecosystems: Challenges for Economists, Hydrologists, Geomorphologists, and Ecologists
  • 2003
  • Ingår i: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 6:7, s. 659-674
  • Tidskriftsartikel (refereegranskat)abstract
    • The quantity and quality of freshwater resources are now being seriously threatened, partly as a result of extensive worldwide changes in land use, and scientists are often called upon by policy makers and managers to predict the ecological consequences that these alterations will have for stream ecosystems. The effects of the urbanization of stream ecosystems in the United States over the next 20 years are of particular concern. To address this issue, we present a multidisciplinary research agenda designed to improve our forecasting of the effects of land-use change on stream ecosystems. Currently, there are gaps in both our knowledge and the data that make it difficult to link the disparate models used by economists, hydrologists, geomorphologists, and ecologists. We identify a number of points that practitioners in each discipline were not comfortable compromising on-for example, by assuming an average condition for a given variable. We provide five instructive examples of the limitations to our ability to forecast the fate of stream and riverine ecosystems one drawn from each modeling step: (a) Accurate economic methods to forecast land-use changes over long periods (such as 20 years) are not available, especially not at spatially explicit scales; (b) geographic data are not always available at the appropriate resolution and are not always organized in categories that are hydrologically, ecologically, or economically meaningful; (c) the relationship between low flows and land use is sometimes hard to establish in anthropogenically affected catchments; (d) bed mobility, suspended sediment load, and channel form-all of which are important for ecological communities in streams-are difficult to predict; and (e) species distributions in rivers are not well documented, and the data that do exist are not always publicly available or have not been sampled at accurate scales, making it difficult to model ecological responses to specified levels of environmental change. Meeting these challenges will require both interdisciplinary cooperation and a reviewed commitment to intradisciplinary research in the fields of economics, geography, quantitative spatial analysis, hydrology, geomorphology, and ecology.
  •  
3.
  • Nilsson, Christer, 1951-, et al. (författare)
  • Forecasting environmental responses to restoration of rivers used as log floatways : an interdisciplinary challenge
  • 2005
  • Ingår i: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 8:7, s. 779-800
  • Tidskriftsartikel (refereegranskat)abstract
    • Log floating in the 19th to mid 20th centuries has profoundly changed the environmental conditions in many northern river systems of the world. Regulation of flow by dams, straightening and narrowing of channels by various piers and wing dams, and homogenization of bed structure are some of the major impacts. As a result, the conditions for many riverine organisms have been altered. Removing physical constructions and returning boulders to the channels can potentially restore conditions for these organisms. Here we describe the history of log driving, review its impact on physical and biological conditions and processes, and predict the responses to restoration. Reviewing the literature on comparable restoration efforts and building upon this knowledge, using boreal Swedish rivers as an example, we address the last point. We hypothesize that restoration measures will make rivers wider and more sinuous, and provide rougher bottoms, thus improving land-water interactions and increasing the retention capacity of water, sediment, organic matter and nutrients. The geomorphic and hydraulic/hydrologic alterations are supposed to favor production, diversity, migration and reproduction of riparian and aquatic organisms. The response rates are likely to vary according to the types of processes and organisms. Some habitat components, such as beds of very large boulders and bedrock outcrops, and availability of sediment and large woody debris are believed to be extremely difficult to restore. Monitoring and evaluation at several scales are needed to test our predictions.
  •  
4.
  • Nilsson, Christer, et al. (författare)
  • How do biota respond to additional physical restoration of restored streams?
  • 2017
  • Ingår i: Ecosystems (New York. Print). - : Springer. - 1432-9840 .- 1435-0629. ; 20:1, s. 144-162
  • Tidskriftsartikel (refereegranskat)abstract
    • Restoration of channelized streams by returning coarse sediment from stream edges to the wetted channel has become a common practice in Sweden. Yet, restoration activities do not always result in the return of desired biota. This study evaluated a restoration project in the Vindel River in northern Sweden in which practitioners further increased channel complexity of previously restored stream reaches by placing very large boulders (> 1 m), trees (> 8 m), and salmonid spawning gravel from adjacent upland areas into the channels. One reach restored with basic methods and another with enhanced methods were selected in each of ten different tributaries to the main channel. Geomorphic and hydraulic complexity was enhanced but the chemical composition of riparian soils and the communities of riparian plants and fish did not exhibit any clear responses to the enhanced restoration measures during the first 5 years compared to reaches restored with basic restoration methods. The variation in the collected data was among streams instead of between types of restored reaches. We conclude that restoration is a disturbance in itself, that immigration potential varies across landscapes, and that biotic recovery processes in boreal river systems are slow. We suggest that enhanced restoration has to apply a catchment-scale approach accounting for connectivity and availability of source populations, and that low-intensity monitoring has to be performed over several decades to evaluate restoration outcomes.
  •  
5.
  • Strayer, D.L., et al. (författare)
  • Effects of Land Cover on Stream Ecosystems: Roles of Empirical Models and Scaling Issues
  • 2003
  • Ingår i: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 6:5, s. 407-423
  • Tidskriftsartikel (refereegranskat)abstract
    • We built ernpirical models to estimate the effects of land cover on stream ecosystems in the mid-Adantic region (USA) and to evaluate the spatial scales over which such models are most effective. Predictive variables included land cover in the watershed, in the streamside corridor, and near the study site, and the number and location of dams and point sources in the watershed. Response variables were annual nitrate flux; species richness of fish, benthic macroinvertebrates, and aquatic plants; and cover of aquatic plants and riparian vegetation. All data were taken from publicly available databases, mostly over the Internet. Land cover was significantly correlated with all ecological response variables. Modeled R-2 ranged from 0.07 to 0.5, but large data sets often allowed us to estimate with acceptable precision the regression coefficients that express the change in ecological conditions associated with a unit change in land cover. Dam and pointsource variables were ineffective at predicting ecological conditions in streams and rivers, probably because of inadequacies in the data sets. The spatial perspective (whole watershed, streamside corridor, or local) most effective at predicting ecological response variables varied across response variables, apparently in concord with the mechanisms that control each of these variables. We found some evidence that predictive power fell in very small watersheds (less than 1-10 km(2)), Suggesting that the spatial arrangement of landscape patches may become critical at these small scales. Empirical models can replace, constrain, or be combined with more mechanistic models to understand the effects of land-cover change on stream ecosystems.
  •  
6.
  • Zinko, Ursula, et al. (författare)
  • Plant species number predicted by a topography based groundwater-flow index
  • 2005
  • Ingår i: Ecosystems (New York. Print). - New York, N.Y. : Springer. - 1432-9840 .- 1435-0629. ; 8:4, s. 430-441
  • Tidskriftsartikel (refereegranskat)abstract
    • The lack of a clear understanding of the factors governing the often-great variation of species numbers over entire landscapes confounds attempts to manage biodiversity. We hypothesized that in a topographically variable boreal forest landscape the availability of shallow groundwater is a major determinant of plant species numbers. We then developed a topographically derived hydrologic index based on multidirectional flow algorithms to account for the variation in availability of such groundwater in the landscape. We found a positive correlation between species numbers of vascular plants in plots ranging from 0.01 to 200 m2 and the hydrologic index. Generally, the landscape was relatively dry and species-poor, but interspersed patches with shallow groundwater had high species numbers and high proportions of regionally uncommon plant species. The index explained 30% of the variation in vascular plant number and correlated quite well (rs = 0.50) with groundwater level, but not as well with a community H+concentration value (instead of community pH, rs = −0.31), based on species composition. In addition, we found a very strong correlation between species number and the community H+ concentration value (rs−0.84). The hydrologic index is a useful tool for the identification of spatial of species number patterns across entire landscapes. This is an important step in identifying the areas most in need of protection or restoration, designing survey techniques, and understanding the fundamental processes that control the spatial distribution of species.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy