SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1460 2156 ;pers:(Mattsson Niklas 1979)"

Sökning: L773:1460 2156 > Mattsson Niklas 1979

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mattsson, Niklas, 1979, et al. (författare)
  • Association of brain amyloid-beta with cerebral perfusion and structure in Alzheimer's disease and mild cognitive impairment
  • 2014
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 137, s. 1550-1561
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with Alzheimer's disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid-beta pathology. Using 182 subjects from the Alzheimer's Disease Neuroimaging Initiative we tested associations of amyloid-beta with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer's disease with dementia (n = 24). Based on the theory that Alzheimer's disease starts with amyloid-beta accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-beta-negative controls and -positive subjects in different diagnostic groups, and if amyloid-beta had different associations with cerebral blood flow and grey matter volume. Global amyloid-beta load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid-beta load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid-beta-positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid-beta with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-beta being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid-beta pathology affects cerebral blood flow across the span from controls to dementia patients. Amyloid-beta pathology has different associations with cerebral blood flow and volume, and may cause more loss of blood flow in early stages, whereas volume loss dominates in late disease stages.
  •  
2.
  • Mattsson, Niklas, 1979, et al. (författare)
  • Independent information from cerebrospinal fluid amyloid-β and florbetapir imaging in Alzheimer's disease.
  • 2015
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 138:3, s. 772-783
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced cerebrospinal fluid amyloid-β42 and increased retention of florbetapir positron emission tomography are biomarkers reflecting cortical amyloid load in Alzheimer's disease. However, these measurements do not always agree and may represent partly different aspects of the underlying Alzheimer's disease pathology. The goal of this study was therefore to test if cerebrospinal fluid and positron emission tomography amyloid-β biomarkers are independently related to other Alzheimer's disease markers, and to examine individuals who are discordantly classified by these two biomarker modalities. Cerebrospinal fluid and positron emission tomography amyloid-β were measured at baseline in 769 persons [161 healthy controls, 68 subjective memory complaints, 419 mild cognitive impairment and 121 Alzheimer's disease dementia, mean age 72 years (standard deviation 7 years), 47% females] and used to predict diagnosis, APOE ε4 carriage status, cerebral blood flow, cerebrospinal fluid total-tau and phosphorylated-tau levels (cross-sectionally); and hippocampal volume, fluorodeoxyglucose positron emission tomography results and Alzheimer's Disease Assessment Scale-cognitive subscale scores (longitudinally). Cerebrospinal fluid and positron emission tomography amyloid-β were highly correlated, but adjusting one of these predictors for the other revealed that they both provided partially independent information when predicting diagnosis, APOE ε4, hippocampal volume, metabolism, cognition, total-tau and phosphorylated-tau (the 95% confidence intervals of the adjusted effects did not include zero). Cerebrospinal fluid amyloid-β was more strongly related to APOE ε4 whereas positron emission tomography amyloid-β was more strongly related to tau levels (P < 0.05). Discordance (mainly isolated cerebrospinal fluid amyloid-β positivity) differed by diagnostic group (P < 0.001) and was seen in 21% of cognitively healthy people but only 6% in dementia patients. The finding that cerebrospinal fluid and positron emission tomography amyloid-β provide partially independent information about a wide range of Alzheimer's measures supports the theory that these modalities represent partly different aspects of Alzheimer's pathology. The fact that mismatch, with positive cerebrospinal fluid amyloid-β but normal positron emission tomography amyloid-β, is relatively common in cognitively healthy people may be considered when using these biomarkers to identify early stage Alzheimer's disease. Reduced cerebrospinal fluid amyloid-β may be more strongly related to early stage Alzheimer's disease, whereas increased positron emission tomography amyloid-β may be more strongly related to disease progression.
  •  
3.
  • Portelius, Erik, 1977, et al. (författare)
  • Cerebrospinal fluid neurogranin: relation to cognition and neurodegeneration in Alzheimer's disease.
  • 2015
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156 .- 0006-8950. ; 138
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptic dysfunction is linked to cognitive symptoms in Alzheimer's disease. Thus, measurement of synapse proteins in cerebrospinal fluid may be useful biomarkers to monitor synaptic degeneration. Cerebrospinal fluid levels of the postsynaptic protein neurogranin are increased in Alzheimer's disease, including in the predementia stage of the disease. Here, we tested the performance of cerebrospinal fluid neurogranin to predict cognitive decline and brain injury in the Alzheimer's Disease Neuroimaging Initiative study. An in-house immunoassay was used to analyse neurogranin in cerebrospinal fluid samples from a cohort of patients who at recruitment were diagnosed as having Alzheimer's disease with dementia (n = 95) or mild cognitive impairment (n = 173), as well as in cognitively normal subjects (n = 110). Patients with mild cognitive impairment were grouped into those that remained cognitively stable for at least 2 years (stable mild cognitive impairment) and those who progressed to Alzheimer's disease dementia during follow-up (progressive mild cognitive impairment). Correlations were tested between baseline cerebrospinal fluid neurogranin levels and baseline and longitudinal cognitive impairment, brain atrophy and glucose metabolism within each diagnostic group. Cerebrospinal fluid neurogranin was increased in patients with Alzheimer's disease dementia (P < 0.001), progressive mild cognitive impairment (P < 0.001) and stable mild cognitive impairment (P < 0.05) compared with controls, and in Alzheimer's disease dementia (P < 0.01) and progressive mild cognitive impairment (P < 0.05) compared with stable mild cognitive impairment. In the mild cognitive impairment group, high baseline cerebrospinal fluid neurogranin levels predicted cognitive decline as reflected by decreased Mini-Mental State Examination (P < 0.001) and increased Alzheimer's Disease Assessment Scale-cognitive subscale (P < 0.001) scores at clinical follow-up. In addition, high baseline cerebrospinal fluid neurogranin levels in the mild cognitive impairment group correlated with longitudinal reductions in cortical glucose metabolism (P < 0.001) and hippocampal volume (P < 0.001) at clinical follow-up. Furthermore, within the progressive mild cognitive impairment group, elevated cerebrospinal fluid neurogranin levels were associated with accelerated deterioration in Alzheimer's Disease Assessment Scale-cognitive subscale (β = 0.0017, P = 0.01). These data demonstrate that cerebrospinal fluid neurogranin is increased already at the early clinical stage of Alzheimer's disease and predicts cognitive deterioration and disease-associated changes in metabolic and structural biomarkers over time.
  •  
4.
  • Skillbäck, Tobias, et al. (författare)
  • Cerebrospinal fluid tau and amyloid-β1-42 in patients with dementia.
  • 2015
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156 .- 0006-8950. ; 138:Pt 9, s. 2716-31
  • Tidskriftsartikel (refereegranskat)abstract
    • Progressive cognitive decline in combination with a cerebrospinal fluid biomarker pattern of low levels of amyloid-β1-42 and high levels of total tau and phosphorylated tau is typical of Alzheimer's disease. However, several neurodegenerative disorders may overlap with Alzheimer's disease both in regards to clinical symptoms and neuropathology. In a uniquely large cohort of dementia patients, we examined the associations of cerebrospinal fluid biomarkers for Alzheimer's disease molecular pathology with clinical dementia diagnoses and disease severity. We cross-referenced the Swedish Dementia Registry with the clinical laboratory database at the Sahlgrenska University Hospital. The final data set consisted of 5676 unique subjects with a clinical dementia diagnosis and a complete set of measurements for cerebrospinal fluid amyloid-β1-42, total tau and phosphorylated tau. In cluster analysis, disregarding clinical diagnosis, the optimal natural separation of this data set was into two clusters, with the majority of patients with early onset Alzheimer's disease (75%) and late onset Alzheimer's disease (73%) assigned to one cluster and the patients with vascular dementia (91%), frontotemporal dementia (94%), Parkinson's disease dementia (94%) and dementia with Lewy bodies (87%) to the other cluster. Frontotemporal dementia had the highest cerebrospinal fluid levels of amyloid-β1-42 and the lowest levels of total tau and phosphorylated tau. The highest levels of total tau and phosphorylated tau and the lowest levels of amyloid-β1-42 and amyloid-β1-42:phosphorylated tau ratios were found in Alzheimer's disease. Low amyloid-β1-42, high total tau and high phosphorylated tau correlated with low Mini-Mental State Examination scores in Alzheimer's disease. In Parkinson's disease dementia and vascular dementia low cerebrospinal fluid amyloid-β1-42 was associated with low Mini-Mental State Examination score. In the vascular dementia, frontotemporal dementia, dementia with Lewy bodies and Parkinson's disease dementia groups 53%, 34%, 67% and 53% of the subjects, respectively had abnormal amyloid-β1-42 levels, 41%, 41%, 28% and 28% had abnormal total tau levels, and 29%, 28%, 25% and 19% had abnormal phosphorylated tau levels. Cerebrospinal fluid biomarkers were strongly associated with specific clinical dementia diagnoses with Alzheimer's disease and frontotemporal dementia showing the greatest difference in biomarker levels. In addition, cerebrospinal fluid amyloid-β1-42, total tau, phosphorylated tau and the amyloid-β1-42:phosphorylated tau ratio all correlated with poor cognitive performance in Alzheimer's disease, as did cerebrospinal fluid amyloid-β1-42 in Parkinson's disease dementia and vascular dementia. The results support the use of cerebrospinal fluid biomarkers to differentiate between dementias in clinical practice, and to estimate disease severity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy