SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1460 2156 ;pers:(Portelius Erik 1977)"

Sökning: L773:1460 2156 > Portelius Erik 1977

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blennow, Kaj, et al. (författare)
  • Cerebrospinal fluid tau fragment correlates with tau PET : a candidate biomarker for tangle pathology
  • 2020
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 143:2, s. 650-660
  • Tidskriftsartikel (refereegranskat)abstract
    • To date, there is no validated fluid biomarker for tau pathology in Alzheimer's disease, with contradictory results from studies evaluating the correlation between phosphorylated tau in CSF with tau PET imaging. Tau protein is subjected to proteolytic processing into fragments before being secreted to the CSF. A recent study suggested that tau cleavage after amino acid 368 by asparagine endopeptidase (AEP) is upregulated in Alzheimer's disease. We used immunoprecipitation followed by mass spectrometric analyses to evaluate the presence of tau368 species in CSF. A novel Simoa® assay for quantification of tau368 in CSF was developed, while total tau (t-tau) was measured by ELISA and the presence of tau368 in tangles was evaluated using immunohistochemistry. The diagnostic utility of tau368 was first evaluated in a pilot study (Alzheimer's disease = 20, control = 20), then in a second cohort where the IWG-2 biomarker criteria were applied (Alzheimer's disease = 37, control = 45), and finally in a third cohort where the correlation with 18F-GTP1 tau PET was evaluated (Alzheimer's disease = 38, control = 11). The tau368/t-tau ratio was significantly decreased in Alzheimer's disease (P < 0.001) in all cohorts. Immunohistochemical staining demonstrated that tau fragments ending at 368 are present in tangles. There was a strong negative correlation between the CSF tau368/t-tau ratio and 18F-GTP1 retention. Our data suggest that tau368 is a tangle-enriched fragment and that the CSF ratio tau368/t-tau reflects tangle pathology. This novel tau biomarker could be used to improve diagnosis of Alzheimer's disease and to facilitate the development of drug candidates targeting tau pathology. Furthermore, future longitudinal studies will increase our understanding of tau pathophysiology in Alzheimer's disease and other tauopathies.
  •  
2.
  • Brinkmalm, Gunnar, et al. (författare)
  • Identification of neurotoxic cross-linked amyloid-β dimers in the Alzheimer's brain
  • 2019
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 142:5, s. 1441-1457
  • Tidskriftsartikel (refereegranskat)abstract
    • The primary structure of canonical amyloid-β-protein was elucidated more than 30 years ago, yet the forms of amyloid-β that play a role in Alzheimer's disease pathogenesis remain poorly defined. Studies of Alzheimer's disease brain extracts suggest that amyloid-β, which migrates on sodium dodecyl sulphate polyacrylamide gel electrophoresis with a molecular weight of ∼7 kDa (7kDa-Aβ), is particularly toxic; however, the nature of this species has been controversial. Using sophisticated mass spectrometry and sensitive assays of disease-relevant toxicity we show that brain-derived bioactive 7kDa-Aβ contains a heterogeneous mixture of covalently cross-linked dimers in the absence of any other detectable proteins. The identification of amyloid-β dimers may open a new phase of Alzheimer's research and allow a better understanding of Alzheimer's disease, and how to monitor and treat this devastating disorder. Future studies investigating the bioactivity of individual dimers cross-linked at known sites will be critical to this effort. © The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.
  •  
3.
  • Cummings, Damian M, et al. (författare)
  • First effects of rising amyloid-β in transgenic mouse brain: synaptic transmission and gene expression.
  • 2015
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 138:Pt 7, s. 1992-2004
  • Tidskriftsartikel (refereegranskat)abstract
    • Detecting and treating Alzheimer's disease, before cognitive deficits occur, has become the health challenge of our time. The earliest known event in Alzheimer's disease is rising amyloid-β. Previous studies have suggested that effects on synaptic transmission may precede plaque deposition. Here we report how relative levels of different soluble amyloid-β peptides in hippocampus, preceding plaque deposition, relate to synaptic and genomic changes. Immunoprecipitation-mass spectrometry was used to measure the early rise of different amyloid-β peptides in a mouse model of increasing amyloid-β ('TASTPM', transgenic for familial Alzheimer's disease genes APP/PSEN1). In the third postnatal week, several amyloid-β peptides were above the limit of detection, including amyloid-β40, amyloid-β38 and amyloid-β42 with an intensity ratio of 6:3:2, respectively. By 2 months amyloid-β levels had only increased by 50% and although the ratio of the different peptides remained constant, the first changes in synaptic currents, compared to wild-type mice could be detected with patch-clamp recordings. Between 2 and 4 months old, levels of amyloid-β40 rose by ∼7-fold, but amyloid-β42 rose by 25-fold, increasing the amyloid-β42:amyloid-β40 ratio to 1:1. Only at 4 months did plaque deposition become detectable and only in some mice; however, synaptic changes were evident in all hippocampal fields. These changes included increased glutamate release probability (P < 0.001, n = 7-9; consistent with the proposed physiological effect of amyloid-β) and loss of spontaneous action potential-mediated activity in the cornu ammonis 1 (CA1) and dentate gyrus regions of the hippocampus (P < 0.001, n = 7). Hence synaptic changes occur when the amyloid-β levels and amyloid-β42:amyloid-β40 ratio are still low compared to those necessary for plaque deposition. Genome-wide microarray analysis revealed changes in gene expression at 2-4 months including synaptic genes being strongly affected but often showing significant changes only by 4 months. We thus demonstrate that, in a mouse model of rising amyloid-β, the initial deposition of plaques does not occur until several months after the first amyloid-β becomes detectable but coincides with a rapid acceleration in the rise of amyloid-β levels and the amyloid-β42:amyloid-β40 ratio. Prior to acceleration, however, there is already a pronounced synaptic dysfunction, reflected as changes in synaptic transmission and altered gene expression, indicating that restoring synaptic function early in the disease progression may represent the earliest possible target for intervention in the onset of Alzheimer's disease.
  •  
4.
  • Fritschi, Sarah K, et al. (författare)
  • Highly potent soluble amyloid-β seeds in human Alzheimer brain but not cerebrospinal fluid.
  • 2014
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 137:11, s. 2909 - 2915
  • Tidskriftsartikel (refereegranskat)abstract
    • The soluble fraction of brain samples from patients with Alzheimer's disease contains highly biologically active amyloid-β seeds. In this study, we sought to assess the potency of soluble amyloid-β seeds derived from the brain and cerebrospinal fluid. Soluble Alzheimer's disease brain extracts were serially diluted and then injected into the hippocampus of young, APP transgenic mice. Eight months later, seeded amyloid-β deposition was evident even when the hippocampus received subattomole amounts of brain-derived amyloid-β. In contrast, cerebrospinal fluid from patients with Alzheimer's disease, which contained more than 10-fold higher levels of amyloid-β peptide than the most concentrated soluble brain extracts, did not induce detectable seeding activity in vivo. Similarly, cerebrospinal fluid from aged APP-transgenic donor mice failed to induce cerebral amyloid-β deposition. In comparison to the soluble brain fraction, cerebrospinal fluid largely lacked N-terminally truncated amyloid-β species and exhibited smaller amyloid-β-positive particles, features that may contribute to the lack of in vivo seeding by cerebrospinal fluid. Interestingly, the same cerebrospinal fluid showed at least some seeding activity in an in vitro assay. The present results indicate that the biological seeding activity of soluble amyloid-β species is orders of magnitude greater in brain extracts than in the cerebrospinal fluid.
  •  
5.
  • Keshavan, Ashvini, et al. (författare)
  • Population-based blood screening for preclinical Alzheimer's disease in a British birth cohort at age 70.
  • 2021
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 144:2, s. 434-449
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease has a preclinical stage when cerebral amyloid-β deposition occurs before symptoms emerge, and when amyloid-β-targeted therapies may have maximum benefits. Existing amyloid-β status measurement techniques, including amyloid PET and CSF testing, are difficult to deploy at scale, so blood biomarkers are increasingly considered for screening. We compared three different blood-based techniques-liquid chromatography-mass spectrometry measures of plasma amyloid-β, and single molecule array (Simoa) measures of plasma amyloid-β and phospho-tau181-to detect cortical 18F-florbetapir amyloid PET positivity (defined as a standardized uptake value ratio of >0.61 between a predefined cortical region of interest and eroded subcortical white matter) in dementia-free members of Insight 46, a substudy of the population-based British 1946 birth cohort. We used logistic regression models with blood biomarkers as predictors of amyloid PET status, with or without age, sex and APOE ε4 carrier status as covariates. We generated receiver operating characteristics curves and quantified areas under the curves to compare the concordance of the different blood tests with amyloid PET. We determined blood test cut-off points using Youden's index, then estimated numbers needed to screen to obtain 100 amyloid PET-positive individuals. Of the 502 individuals assessed, 441 dementia-free individuals with complete data were included; 82 (18.6%) were amyloid PET-positive. The area under the curve for amyloid PET status using a base model comprising age, sex and APOE ε4 carrier status was 0.695 (95% confidence interval: 0.628-0.762). The two best-performing Simoa plasma biomarkers were amyloid-β42/40 (0.620; 0.548-0.691) and phospho-tau181 (0.707; 0.646-0.768), but neither outperformed the base model. Mass spectrometry plasma measures performed significantly better than any other measure (amyloid-β1-42/1-40: 0.817; 0.770-0.864 and amyloid-β composite: 0.820; 0.775-0.866). At a cut-off point of 0.095, mass spectrometry measures of amyloid-β1-42/1-40 detected amyloid PET positivity with 86.6% sensitivity and 71.9% specificity. Without screening, to obtain 100 PET-positive individuals from a population with similar amyloid PET positivity prevalence to Insight 46, 543 PET scans would need to be performed. Screening using age, sex and APOE ε4 status would require 940 individuals, of whom 266 would proceed to scan. Using mass spectrometry amyloid-β1-42/1-40 alone would reduce these numbers to 623 individuals and 243 individuals, respectively. Across a theoretical range of amyloid PET positivity prevalence of 10-50%, mass spectrometry measures of amyloid-β1-42/1-40 would consistently reduce the numbers proceeding to scans, with greater cost savings demonstrated at lower prevalence.
  •  
6.
  • Leuzy, Antoine, et al. (författare)
  • Pittsburgh compound B imaging and cerebrospinal fluid amyloid-β in a multicentre European memory clinic study.
  • 2016
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 139:Pt 9, s. 2540-53
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to assess the agreement between data on cerebral amyloidosis, derived using Pittsburgh compound B positron emission tomography and (i) multi-laboratory INNOTEST enzyme linked immunosorbent assay derived cerebrospinal fluid concentrations of amyloid-β42; (ii) centrally measured cerebrospinal fluid amyloid-β42 using a Meso Scale Discovery enzyme linked immunosorbent assay; and (iii) cerebrospinal fluid amyloid-β42 centrally measured using an antibody-independent mass spectrometry-based reference method. Moreover, we examined the hypothesis that discordance between amyloid biomarker measurements may be due to interindividual differences in total amyloid-β production, by using the ratio of amyloid-β42 to amyloid-β40 Our study population consisted of 243 subjects from seven centres belonging to the Biomarkers for Alzheimer's and Parkinson's Disease Initiative, and included subjects with normal cognition and patients with mild cognitive impairment, Alzheimer's disease dementia, frontotemporal dementia, and vascular dementia. All had Pittsburgh compound B positron emission tomography data, cerebrospinal fluid INNOTEST amyloid-β42 values, and cerebrospinal fluid samples available for reanalysis. Cerebrospinal fluid samples were reanalysed (amyloid-β42 and amyloid-β40) using Meso Scale Discovery electrochemiluminescence enzyme linked immunosorbent assay technology, and a novel, antibody-independent, mass spectrometry reference method. Pittsburgh compound B standardized uptake value ratio results were scaled using the Centiloid method. Concordance between Meso Scale Discovery/mass spectrometry reference measurement procedure findings and Pittsburgh compound B was high in subjects with mild cognitive impairment and Alzheimer's disease, while more variable results were observed for cognitively normal and non-Alzheimer's disease groups. Agreement between Pittsburgh compound B classification and Meso Scale Discovery/mass spectrometry reference measurement procedure findings was further improved when using amyloid-β42/40 Agreement between Pittsburgh compound B visual ratings and Centiloids was near complete. Despite improved agreement between Pittsburgh compound B and centrally analysed cerebrospinal fluid, a minority of subjects showed discordant findings. While future studies are needed, our results suggest that amyloid biomarker results may not be interchangeable in some individuals.
  •  
7.
  • O'Connor, Antoinette, et al. (författare)
  • Plasma amyloid-β ratios in autosomal dominant Alzheimer's disease: the influence of genotype.
  • 2021
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 144:10, s. 2964-2970
  • Tidskriftsartikel (refereegranskat)abstract
    • In vitro studies of autosomal dominant Alzheimer's disease implicate longer amyloid-β peptides in disease pathogenesis; however, less is known about the behaviour of these mutations in vivo. In this cross-sectional cohort study, we used liquid chromatography-tandem mass spectrometry to analyse 66 plasma samples from individuals who were at risk of inheriting a mutation or were symptomatic. We tested for differences in amyloid-β (Aβ)42:38, Aβ42:40 and Aβ38:40 ratios between presenilin 1 (PSEN1) and amyloid precursor protein (APP) carriers. We examined the relationship between plasma and in vitro models of amyloid-β processing and tested for associations with parental age at onset. Thirty-nine participants were mutation carriers (28 PSEN1 and 11 APP). Age- and sex-adjusted models showed marked differences in plasma amyloid-β between genotypes: higher Aβ42:38 in PSEN1 versus APP (P < 0.001) and non-carriers (P < 0.001); higher Aβ38:40 in APP versus PSEN1 (P < 0.001) and non-carriers (P < 0.001); while Aβ42:40 was higher in both mutation groups compared to non-carriers (both P < 0.001). Amyloid-β profiles were reasonably consistent in plasma and cell lines. Within the PSEN1 group, models demonstrated associations between Aβ42:38, Aβ42:40 and Aβ38:40 ratios and parental age at onset. In vivo differences in amyloid-β processing between PSEN1 and APP carriers provide insights into disease pathophysiology, which can inform therapy development.
  •  
8.
  • Portelius, Erik, 1977, et al. (författare)
  • Cerebrospinal fluid neurogranin: relation to cognition and neurodegeneration in Alzheimer's disease.
  • 2015
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156 .- 0006-8950. ; 138
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptic dysfunction is linked to cognitive symptoms in Alzheimer's disease. Thus, measurement of synapse proteins in cerebrospinal fluid may be useful biomarkers to monitor synaptic degeneration. Cerebrospinal fluid levels of the postsynaptic protein neurogranin are increased in Alzheimer's disease, including in the predementia stage of the disease. Here, we tested the performance of cerebrospinal fluid neurogranin to predict cognitive decline and brain injury in the Alzheimer's Disease Neuroimaging Initiative study. An in-house immunoassay was used to analyse neurogranin in cerebrospinal fluid samples from a cohort of patients who at recruitment were diagnosed as having Alzheimer's disease with dementia (n = 95) or mild cognitive impairment (n = 173), as well as in cognitively normal subjects (n = 110). Patients with mild cognitive impairment were grouped into those that remained cognitively stable for at least 2 years (stable mild cognitive impairment) and those who progressed to Alzheimer's disease dementia during follow-up (progressive mild cognitive impairment). Correlations were tested between baseline cerebrospinal fluid neurogranin levels and baseline and longitudinal cognitive impairment, brain atrophy and glucose metabolism within each diagnostic group. Cerebrospinal fluid neurogranin was increased in patients with Alzheimer's disease dementia (P < 0.001), progressive mild cognitive impairment (P < 0.001) and stable mild cognitive impairment (P < 0.05) compared with controls, and in Alzheimer's disease dementia (P < 0.01) and progressive mild cognitive impairment (P < 0.05) compared with stable mild cognitive impairment. In the mild cognitive impairment group, high baseline cerebrospinal fluid neurogranin levels predicted cognitive decline as reflected by decreased Mini-Mental State Examination (P < 0.001) and increased Alzheimer's Disease Assessment Scale-cognitive subscale (P < 0.001) scores at clinical follow-up. In addition, high baseline cerebrospinal fluid neurogranin levels in the mild cognitive impairment group correlated with longitudinal reductions in cortical glucose metabolism (P < 0.001) and hippocampal volume (P < 0.001) at clinical follow-up. Furthermore, within the progressive mild cognitive impairment group, elevated cerebrospinal fluid neurogranin levels were associated with accelerated deterioration in Alzheimer's Disease Assessment Scale-cognitive subscale (β = 0.0017, P = 0.01). These data demonstrate that cerebrospinal fluid neurogranin is increased already at the early clinical stage of Alzheimer's disease and predicts cognitive deterioration and disease-associated changes in metabolic and structural biomarkers over time.
  •  
9.
  • Wiseman, Frances K, et al. (författare)
  • Trisomy of human chromosome 21 enhances amyloid-β deposition independently of an extra copy of APP.
  • 2018
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 141:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Down syndrome, caused by trisomy of chromosome 21, is the single most common risk factor for early-onset Alzheimer's disease. Worldwide approximately 6 million people have Down syndrome, and all these individuals will develop the hallmark amyloid plaques and neurofibrillary tangles of Alzheimer's disease by the age of 40 and the vast majority will go on to develop dementia. Triplication of APP, a gene on chromosome 21, is sufficient to cause early-onset Alzheimer's disease in the absence of Down syndrome. However, whether triplication of other chromosome 21 genes influences disease pathogenesis in the context of Down syndrome is unclear. Here we show, in a mouse model, that triplication of chromosome 21 genes other than APP increases amyloid-β aggregation, deposition of amyloid-β plaques and worsens associated cognitive deficits. This indicates that triplication of chromosome 21 genes other than APP is likely to have an important role to play in Alzheimer's disease pathogenesis in individuals who have Down syndrome. We go on to show that the effect of trisomy of chromosome 21 on amyloid-β aggregation correlates with an unexpected shift in soluble amyloid-β 40/42 ratio. This alteration in amyloid-β isoform ratio occurs independently of a change in the carboxypeptidase activity of the γ-secretase complex, which cleaves the peptide from APP, or the rate of extracellular clearance of amyloid-β. These new mechanistic insights into the role of triplication of genes on chromosome 21, other than APP, in the development of Alzheimer's disease in individuals who have Down syndrome may have implications for the treatment of this common cause of neurodegeneration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy