SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1471 2164 OR L773:1471 2164 ;pers:(Hansson Bengt)"

Sökning: L773:1471 2164 OR L773:1471 2164 > Hansson Bengt

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chauhan, Pallavi, et al. (författare)
  • De novo transcriptome of Ischnura elegans provides insights into sensory biology, colour and vision genes
  • 2014
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is growing interest in odonates (damselflies and dragonflies) as model organisms in ecology and evolutionary biology but the development of genomic resources has been slow. So far only one draft genome (Ladona fulva) and one transcriptome assembly (Enallagma hageni) have been published. Odonates have some of the most advanced visual systems among insects and several species are colour polymorphic, and genomic and transcriptomic data would allow studying the genomic architecture of these interesting traits and make detailed comparative studies between related species possible. Here, we present a comprehensive de novo transcriptome assembly for the blue-tailed damselfly Ischnura elegans (Odonata: Coenagrionidae) built from short-read RNA-seq data. The transcriptome analysis in this paper provides a first step towards identifying genes and pathways underlying the visual and colour systems in this insect group. Results: Illumina RNA sequencing performed on tissues from the head, thorax and abdomen generated 428,744,100 paired-ends reads amounting to 110 Gb of sequence data, which was assembled de novo with Trinity. A transcriptome was produced after filtering and quality checking yielding a final set of 60,232 high quality transcripts for analysis. CEGMA software identified 247 out of 248 ultra-conserved core proteins as 'complete' in the transcriptome assembly, yielding a completeness of 99.6%. BLASTX and InterProScan annotated 55% of the assembled transcripts and showed that the three tissue types differed both qualitatively and quantitatively in I. elegans. Differential expression identified 8,625 transcripts to be differentially expressed in head, thorax and abdomen. Targeted analyses of vision and colour functional pathways identified the presence of four different opsin types and three pigmentation pathways. We also identified transcripts involved in temperature sensitivity, thermoregulation and olfaction. All these traits and their associated transcripts are of considerable ecological and evolutionary interest for this and other insect orders. Conclusions: Our work presents a comprehensive transcriptome resource for the ancient insect order Odonata and provides insight into their biology and physiology. The transcriptomic resource can provide a foundation for future investigations into this diverse group, including the evolution of colour, vision, olfaction and thermal adaptation.
  •  
2.
  • Naurin, Sara, et al. (författare)
  • The sex-biased brain: sexual dimorphism in gene expression in two species of songbirds
  • 2011
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Despite virtually identical DNA sequences between the sexes, sexual dimorphism is a widespread phenomenon in nature. To a large extent the systematic differences between the sexes must therefore arise from processes involving gene regulation. In accordance, sexual dimorphism in gene expression is common and extensive. Genes with sexually dimorphic regulation are known to evolve rapidly, both in DNA sequence and in gene expression profile. Studies of gene expression in related species can shed light on the flexibility, or degree of conservation, of the gene expression profiles underlying sexual dimorphism. Results: We have studied the extent of sexual dimorphism in gene expression in the brain of two species of songbirds, the zebra finch (Taeniopygia guttata) and the common whitethroat (Sylvia communis), using large-scale microarray technology. Sexual dimorphism in gene expression was extensive in both species, and predominantly sex-linked: most genes identified were male-biased and Z-linked. Interestingly, approximately 50% of the male-biased Z-linked genes were sex-biased only in one of the study species. Conclusion: Our results corroborate the results of recent studies in chicken and zebra finch which have been interpreted as caused by a low degree of dosage compensation in female birds (i.e. the heterogametic sex). Moreover, they suggest that zebra finches and common whitethroats dosage compensate partly different sets of genes on the Z chromosome. It is possible that this pattern reflects differences in either the essentiality or the level of sexual antagonism of these genes in the respective species. Such differences might correspond to genes with different rates of evolution related to sexual dimorphism in the avian brain, and might therefore be correlated with differences between the species in sex-specific behaviours.
  •  
3.
  • Chauhan, Pallavi, et al. (författare)
  • Transcriptome profiling in the damselfly Ischnura elegans identifies genes with sex-biased expression
  • 2016
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Sexual dimorphism occurs widely across the animal kingdom and has profound effects on evolutionary trajectories. Here, we investigate sex-specific gene expression in Ischnura elegans (Odonata: dragonflies and damselflies), a species with pronounced sexual differences including a female-limited colour polymorphism with two female-like gynochrome morphs and one male-mimicking, androchrome morph. Whole-organism transcriptome profiling and sex-biased gene expression analysis was conducted on adults of both sexes (pooling all females as well as separating the three morphs) to gain insights into genes and pathways potentially associated with sexual development and sexual conflict. Results: The de novo transcriptome assembly was of high quality and completeness (54 k transcripts; 99.6% CEGMA score; 55% annotated). We identified transcripts of several relevant pathways, including transcripts involved in sex determination, hormone biosynthesis, pigmentation and innate immune signalling. A total of 1,683 genes were differentially expressed (DE) between males and all females (1,173 were female-biased; 510 male-biased). The DE genes were associated with sex-specific physiological and reproductive processes, olfaction, pigmentation (ommochrome and melanin), hormone (ecdysone) biosynthesis and innate immunity signalling pathways. Comparisons between males and each female morph category showed that the gynochromes differed more from males than the androchrome morph. Conclusions: This is the first study to characterize sex-biased gene expression in odonates, one of the most ancient extant insect orders. Comparison between I. elegans sexes revealed expression differences in several genes related to sexual differences in behaviour and development as well as morphology. The differential expression of several olfactory genes suggests interesting sexual components in the detection of odours, pheromones and environmental volatiles. Up-regulation of pigmentation pathways in females indicates a prominent role of ommochrome pigments in the formation of the genetically controlled female colour polymorphism. Finally, the female-biased expression of several immunity genes suggests a stronger immune response in females, possibly related to the high levels of male mating harassment and recurrent matings in this species, both of which have been shown to injure females and expose them to sexually transmitted diseases and toxins contained in seminal fluids.
  •  
4.
  • Sigeman, Hanna, et al. (författare)
  • Findzx : an automated pipeline for detecting and visualising sex chromosomes using whole-genome sequencing data
  • 2022
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Sex chromosomes have evolved numerous times, as revealed by recent genomic studies. However, large gaps in our knowledge of sex chromosome diversity across the tree of life remain. Filling these gaps, through the study of novel species, is crucial for improved understanding of why and how sex chromosomes evolve. Characterization of sex chromosomes in already well-studied organisms is also important to avoid misinterpretations of population genomic patterns caused by undetected sex chromosome variation. Results: Here we present findZX, an automated Snakemake-based computational pipeline for detecting and visualizing sex chromosomes through differences in genome coverage and heterozygosity between any number of males and females. A main feature of the pipeline is the option to perform a genome coordinate liftover to a reference genome of another species. This allows users to inspect sex-linked regions over larger contiguous chromosome regions, while also providing important between-species synteny information. To demonstrate its effectiveness, we applied findZX to publicly available genomic data from species belonging to widely different taxonomic groups (mammals, birds, reptiles, and fish), with sex chromosome systems of different ages, sizes, and levels of differentiation. We also demonstrate that the liftover method is robust over large phylogenetic distances (> 80 million years of evolution). Conclusions: With findZX we provide an easy-to-use and highly effective tool for identification of sex chromosomes. The pipeline is compatible with both Linux and MacOS systems, and scalable to suit different computational platforms.
  •  
5.
  • Zhang, Hongkai, et al. (författare)
  • RecView : an interactive R application for locating recombination positions using pedigree data
  • 2023
  • Ingår i: BMC Genomics. - 1471-2164. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recombination reshuffles alleles at linked loci, allowing genes to evolve independently and consequently enhancing the efficiency of selection. This makes quantifying recombination along chromosomes an important goal for understanding how selection and drift are acting on genes and chromosomes. Results: We present RecView, an interactive R application and its homonymous R package, to facilitate locating recombination positions along chromosomes or scaffolds using whole-genome genotype data of a three-generation pedigree. RecView analyses and plots the grandparent-of-origin of all informative alleles along each chromosome of the offspring in the pedigree, and infers recombination positions with either of two built-in algorithms: one based on change in the proportion of the alleles with specific grandparent-of-origin, and one on the degree of continuity of alleles with the same grandparent-of-origin. RecView handles multiple offspring and chromosomes simultaneously, and all putative recombination positions are reported in base pairs together with an estimated precision based on the local density of informative alleles. We demonstrate RecView using genotype data of a passerine bird with an available reference genome, the great reed warbler (Acrocephalus arundinaceus), and show that recombination events can be located to specific positions. Conclusions: RecView is an easy-to-use and highly effective application for locating recombination positions with high precision. RecView is available on GitHub (https://github.com/HKyleZhang/RecView.git).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy