SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1471 2164 OR L773:1471 2164 ;pers:(Wright Dominic)"

Search: L773:1471 2164 OR L773:1471 2164 > Wright Dominic

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Nätt, Daniel, et al. (author)
  • Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens
  • 2012
  • In: BMC Genomics. - : BioMed Central. - 1471-2164. ; 13:59
  • Journal article (peer-reviewed)abstract
    • Variations in gene expression, mediated by epigenetic mechanisms, may cause broad phenotypic effects in animals. However, it has been debated to what extent expression variation and epigenetic modifications, such as patterns of DNA methylation, are transferred across generations, and therefore it is uncertain what role epigenetic variation may play in adaptation. Here, we show that in Red Junglefowl, ancestor of domestic chickens, gene expression and methylation profiles in thalamus/hypothalamus differ substantially from that of a domesticated egg laying breed. Expression as well as methylation differences are largely maintained in the offspring, demonstrating reliable inheritance of epigenetic variation. Some of the inherited methylation differences are tissue-specific, and the differential methylation at specific loci are little changed after eight generations of intercrossing between Red Junglefowl and domesticated laying hens. There was an over-representation of differentially expressed and methylated genes in selective sweep regions associated with chicken domestication. Hence, our results show that epigenetic variation is inherited in chickens, and we suggest that selection of favourable epigenomes, either by selection of genotypes affecting epigenetic states, or by selection of methylation states which are inherited independently of sequence differences, may have been an important aspect of chicken domestication.
  •  
2.
  • Atikuzzaman, Mohammad, et al. (author)
  • Conserved gene expression in sperm reservoirs between birds and mammals in response to mating.
  • 2017
  • In: BMC Genomics. - : BioMed Central. - 1471-2164. ; 18:1
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Spermatozoa are stored in the oviductal functional sperm reservoir in animals with internal fertilization, including zoologically distant classes such as pigs or poultry. They are held fertile in the reservoir for times ranging from a couple of days (in pigs), to several weeks (in chickens), before they are gradually released to fertilize the newly ovulated eggs. It is currently unknown whether females from these species share conserved mechanisms to tolerate such a lengthy presence of immunologically-foreign spermatozoa. Therefore, global gene expression was assessed using cDNA microarrays on tissue collected from the avian utero-vaginal junction (UVJ), and the porcine utero-tubal junction (UTJ) to determine expression changes after mating (entire semen deposition) or in vivo cloacal/cervical infusion of sperm-free seminal fluid (SF)/seminal plasma (SP).RESULTS: In chickens, mating changed the expression of 303 genes and SF-infusion changed the expression of 931 genes, as compared to controls, with 68 genes being common to both treatments. In pigs, mating or SP-infusion changed the expressions of 1,722 and 1,148 genes, respectively, as compared to controls, while 592 genes were common to both treatments. The differentially expressed genes were significantly enriched for GO categories related to immune system functions (35.72-fold enrichment). The top 200 differentially expressed genes of each treatment in each animal class were analysed for gene ontology. In both pig and chicken, an excess of genes affecting local immune defence were activated, though frequently these were down-regulated. Similar genes were found in both the chicken and pig, either involved in pH-regulation (SLC16A2, SLC4A9, SLC13A1, SLC35F1, ATP8B3, ATP13A3) or immune-modulation (IFIT5, IFI16, MMP27, ADAMTS3, MMP3, MMP12).CONCLUSION: Despite being phylogenetically distant, chicken and pig appear to share some gene functions for the preservation of viable spermatozoa in the female reservoirs.
  •  
3.
  •  
4.
  • Höglund, Andrey, et al. (author)
  • The genetic regulation of size variation in the transcriptome of the cerebrum in the chicken and its role in domestication and brain size evolution
  • 2020
  • In: BMC Genomics. - : BMC. - 1471-2164. ; 21:1
  • Journal article (peer-reviewed)abstract
    • BackgroundLarge difference in cerebrum size exist between avian species and populations of the same species and is believed to reflect differences in processing power, i.e. in the speed and efficiency of processing information in this brain region. During domestication chickens developed a larger cerebrum compared to their wild progenitor, the Red jungle fowl. The underlying mechanisms that control cerebrum size and the extent to which genetic regulation is similar across brain regions is not well understood. In this study, we combine measurement of cerebrum size with genome-wide genetical genomics analysis to identify the genetic architecture of the cerebrum, as well as compare the regulation of gene expression in this brain region with gene expression in other regions of the brain (the hypothalamus) and somatic tissue (liver).ResultsWe identify one candidate gene that putatively regulates cerebrum size (MTF2) as well as a large number of eQTL that regulate the transcriptome in cerebrum tissue, with the majority of these eQTL being trans-acting. The overall regulation of gene expression variation in the cerebrum was markedly different to the hypothalamus, with relatively few eQTL in common. In comparison, the cerebrum tissue shared more eQTL with a distant tissue (liver) than with a neighboring tissue (hypothalamus).ConclusionThe candidate gene for cerebrum size (MTF2) has previously been linked to brain development making it a good candidate for further investigation as a regulator of inter-population variation in cerebrum size. The lack of shared eQTL between the two brain regions implies that genetic regulation of gene expression appears to be relatively independent between the two brain regions and suggest that coevolution between these two brain regions might be more functionally driven than developmental. These findings have relevance for current brain size evolution theories.
  •  
5.
  • Johnsson, Martin, et al. (author)
  • Genetical genomics of growth in a chicken model
  • 2018
  • In: BMC Genomics. - : BIOMED CENTRAL LTD. - 1471-2164. ; 19
  • Journal article (peer-reviewed)abstract
    • Background: The genetics underlying body mass and growth are key to understanding a wide range of topics in biology, both evolutionary and developmental. Body mass and growth traits are affected by many genetic variants of small effect. This complicates genetic mapping of growth and body mass. Experimental intercrosses between individuals from divergent populations allows us to map naturally occurring genetic variants for selected traits, such as body mass by linkage mapping. By simultaneously measuring traits and intermediary molecular phenotypes, such as gene expression, one can use integrative genomics to search for potential causative genes. Results: In this study, we use linkage mapping approach to map growth traits (N = 471) and liver gene expression (N = 130) in an advanced intercross of wild Red Junglefowl and domestic White Leghorn layer chickens. We find 16 loci for growth traits, and 1463 loci for liver gene expression, as measured by microarrays. Of these, the genes TRAK1, OSBPL8, YEATS4, CEP55, and PIP4K2B are identified as strong candidates for growth loci in the chicken. We also show a high degree of sex-specific gene-regulation, with almost every gene expression locus exhibiting sex-interactions. Finally, several trans-regulatory hotspots were found, one of which coincides with a major growth locus. Conclusions: These findings not only serve to identify several strong candidates affecting growth, but also show how sex-specificity and local gene-regulation affect growth regulation in the chicken.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view