SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1476 5578 srt2:(2010-2014);lar1:(gu)"

Sökning: L773:1476 5578 > (2010-2014) > Göteborgs universitet

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bergen, S. E., et al. (författare)
  • Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder
  • 2012
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 17:9, s. 880-886
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia (SCZ) and bipolar disorder (BD) are highly heritable psychiatric disorders with overlapping susceptibility loci and symptomatology. We conducted a genome-wide association study (GWAS) of these disorders in a large Swedish sample. We report a new and independent case-control analysis of 1507 SCZ cases, 836 BD cases and 2093 controls. No single-nucleotide polymorphisms (SNPs) achieved significance in these new samples; however, combining new and previously reported SCZ samples (2111 SCZ and 2535 controls) revealed a genome-wide significant association in the major histocompatibility complex (MHC) region (rs886424, P = 4.54 x 10(-8)). Imputation using multiple reference panels and meta-analysis with the Psychiatric Genomics Consortium SCZ results underscored the broad, significant association in the MHC region in the full SCZ sample. We evaluated the role of copy number variants (CNVs) in these subjects. As in prior reports, deletions were enriched in SCZ, but not BD cases compared with controls. Singleton deletions were more frequent in both case groups compared with controls (SCZ: P = 0.003, BD: P = 0.013), whereas the largest CNVs (>500 kb) were significantly enriched only in SCZ cases (P = 0.0035). Two CNVs with previously reported SCZ associations were also overrepresented in this SCZ sample: 16p11.2 duplications (P = 0.0035) and 22q11 deletions (P = 0.03). These results reinforce prior reports of significant MHC and CNV associations in SCZ, but not BD.
  •  
3.
  • Lavebratt, C., et al. (författare)
  • The KMO allele encoding Arg(452) is associated with psychotic features in bipolar disorder type 1, and with increased CSF KYNA level and reduced KMO expression
  • 2014
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 19:3, s. 334-341
  • Tidskriftsartikel (refereegranskat)abstract
    • The kynurenine pathway metabolite kynurenic acid (KYNA), modulating glutamatergic and cholinergic neurotransmission, is increased in cerebrospinal fluid (CSF) of patients with schizophrenia or bipolar disorder type 1 with psychotic features. KYNA production is critically dependent on kynurenine 3-monooxygenase (KMO). KMO mRNA levels and activity in prefrontal cortex (PFC) are reduced in schizophrenia. We hypothesized that KMO expression in PFC would be reduced in bipolar disorder with psychotic features and that a functional genetic variant of KMO would associate with this disease, CSF KYNA level and KMO expression. KMO mRNA levels were reduced in PFC of bipolar disorder patients with lifetime psychotic features (P = 0.005, n = 19) or schizophrenia (P = 0.02, n = 36) compared with nonpsychotic patients and controls. KMO genetic association to psychotic features in bipolar disorder type 1 was studied in 493 patients and 1044 controls from Sweden. The KMO Arg(452) allele was associated with psychotic features during manic episodes (P = 0.003). KMO Arg(452) was studied for association to CSF KYNA levels in an independent sample of 55 Swedish patients, and to KMO expression in 717 lymphoblastoid cell lines and 138 hippocampal biopsies. KMO Arg(452) associated with increased levels of CSF KYNA (P = 0.03) and reduced lymphoblastoid and hippocampal KMO expression (P <= 0.05). Thus, findings from five independent cohorts suggest that genetic variation in KMO influences the risk for psychotic features in mania of bipolar disorder patients. This provides a possible mechanism for the previous findings of elevated CSF KYNA levels in those bipolar patients with lifetime psychotic features and positive association between KYNA levels and number of manic episodes.
  •  
4.
  • Li, M, et al. (författare)
  • Allelic differences between Europeans and Chinese for CREB1 SNPs and their implications in gene expression regulation, hippocampal structure and function, and bipolar disorder susceptibility.
  • 2014
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 19:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder (BD) is a polygenic disorder that shares substantial genetic risk factors with major depressive disorder (MDD). Genetic analyses have reported numerous BD susceptibility genes, while some variants, such as single-nucleotide polymorphisms (SNPs) in CACNA1C have been successfully replicated, many others have not and subsequently their effects on the intermediate phenotypes cannot be verified. Here, we studied the MDD-related gene CREB1 in a set of independent BD sample groups of European ancestry (a total of 64 888 subjects) and identified multiple SNPs significantly associated with BD (the most significant being SNP rs6785[A], P=6.32 × 10−5, odds ratio (OR)=1.090). Risk SNPs were then subjected to further analyses in healthy Europeans for intermediate phenotypes of BD, including hippocampal volume, hippocampal function and cognitive performance. Our results showed that the risk SNPs were significantly associated with hippocampal volume and hippocampal function, with the risk alleles showing a decreased hippocampal volume and diminished activation of the left hippocampus, adding further evidence for their involvement in BD susceptibility. We also found the risk SNPs were strongly associated with CREB1 expression in lymphoblastoid cells (P<0.005) and the prefrontal cortex (P<1.0 × 10−6). Remarkably, population genetic analysis indicated that CREB1 displayed striking differences in allele frequencies between continental populations, and the risk alleles were completely absent in East Asian populations. We demonstrated that the regional prevalence of the CREB1 risk alleles in Europeans is likely caused by genetic hitchhiking due to natural selection acting on a nearby gene. Our results suggest that differential population histories due to natural selection on regional populations may lead to genetic heterogeneity of susceptibility to complex diseases, such as BD, and explain inconsistencies in detecting the genetic markers of these diseases among different ethnic populations.
  •  
5.
  • Ronald, A., et al. (författare)
  • A twin study of autism symptoms in Sweden
  • 2011
  • Ingår i: Molecular Psychiatry. - London, United Kingdom : Nature Publishing Group. - 1359-4184 .- 1476-5578. ; 16:10, s. 1039-1047
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to identify empirically the number of factors underlying autism symptoms-social impairments, communication impairments, and restricted repetitive behaviors and interests-when assessed in a general population sample. It also investigated to what extent these autism symptoms are caused by the same or different genetic and environmental influences. Autistic symptoms were assessed in a population-based twin cohort of >12,000 (9- and 12-year-old) children by parental interviews. Confirmatory factor analyses, principal component analyses and multivariate structural equation model fitting were carried out. A multiple factor solution was suggested, with nearly all analyses pointing to a three-factor model for both boys and girls and at both ages. A common pathway twin model fit the data best, which showed that there were some underlying common genetic and environmental influences across the different autism dimensions, but also significant specific genetic effects on each symptom type. These results suggest that the autism triad consists of three partly independent dimensions when assessed in the general population, and that these different autism symptoms, to a considerable extent, have partly separate genetic influences. These findings may explain the large number of children who do not meet current criteria for autism but who show some autism symptoms. Molecular genetic research may benefit from taking a symptom-specific approach to finding genes associated with autism.
  •  
6.
  • Ruderfer, D M, et al. (författare)
  • Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia.
  • 2014
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 19:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder and schizophrenia are two often severe disorders with high heritabilities. Recent studies have demonstrated a large overlap of genetic risk loci between these disorders but diagnostic and molecular distinctions still remain. Here, we perform a combined genome-wide association study (GWAS) of 19 779 bipolar disorder (BP) and schizophrenia (SCZ) cases versus 19 423 controls, in addition to a direct comparison GWAS of 7129 SCZ cases versus 9252 BP cases. In our case-control analysis, we identify five previously identified regions reaching genome-wide significance (CACNA1C, IFI44L, MHC, TRANK1 and MAD1L1) and a novel locus near PIK3C2A. We create a polygenic risk score that is significantly different between BP and SCZ and show a significant correlation between a BP polygenic risk score and the clinical dimension of mania in SCZ patients. Our results indicate that first, combining diseases with similar genetic risk profiles improves power to detect shared risk loci and second, that future direct comparisons of BP and SCZ are likely to identify loci with significant differential effects. Identifying these loci should aid in the fundamental understanding of how these diseases differ biologically. These findings also indicate that combining clinical symptom dimensions and polygenic signatures could provide additional information that may someday be used clinically.Molecular Psychiatry advance online publication, 26 November 2013;
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy