SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1476 5578 srt2:(2020-2022);pers:(Erhardt Sophie)"

Sökning: L773:1476 5578 > (2020-2022) > Erhardt Sophie

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mätlik, Kärt, et al. (författare)
  • Elevated endogenous GDNF induces altered dopamine signalling in mice and correlates with clinical severity in schizophrenia.
  • 2022
  • Ingår i: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578.
  • Tidskriftsartikel (refereegranskat)abstract
    • Presynaptic increase in striatal dopamine is the primary dopaminergic abnormality in schizophrenia, but the underlying mechanisms are not understood. Here, we hypothesized that increased expression of endogenous GDNF could induce dopaminergic abnormalities that resemble those seen in schizophrenia. To test the impact of GDNF elevation, without inducing adverse effects caused by ectopic overexpression, we developed a novel in vivo approach to conditionally increase endogenous GDNF expression. We found that a 2-3-fold increase in endogenous GDNF in the brain was sufficient to induce molecular, cellular, and functional changes in dopamine signalling in the striatum and prefrontal cortex, including increased striatal presynaptic dopamine levels and reduction of dopamine in prefrontal cortex. Mechanistically, we identified adenosine A2a receptor (A2AR), a G-protein coupled receptor that modulates dopaminergic signalling, as a possible mediator of GDNF-driven dopaminergic abnormalities. We further showed that pharmacological inhibition of A2AR with istradefylline partially normalised striatal GDNF and striatal and cortical dopamine levels in mice. Lastly, we found that GDNF levels are increased in the cerebrospinal fluid of first episode psychosis patients, and in post-mortem striatum of schizophrenia patients. Our results reveal a possible contributor for increased striatal dopamine signalling in a subgroup of schizophrenia patients and suggest that GDNF-A2AR crosstalk may regulate dopamine function in a therapeutically targetable manner.
  •  
2.
  • Plavén-Sigray, Pontus, et al. (författare)
  • Thalamic dopamine D2-receptor availability in schizophrenia : a study on antipsychotic-naive patients with first-episode psychosis and a meta-analysis.
  • 2022
  • Ingår i: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 27:2, s. 1233-1240
  • Tidskriftsartikel (refereegranskat)abstract
    • Pharmacological and genetic evidence support a role for an involvement of the dopamine D2-receptor (D2-R) in the pathophysiology of schizophrenia. Previous molecular imaging studies have suggested lower levels of D2-R in thalamus, but results are inconclusive. The objective of the present study was to use improved methodology to compare D2-R density in whole thalamus and thalamic subregions between first-episode psychosis patients and healthy controls. Differences in thalamocortical connectivity was explored based on the D2-R results. 19 antipsychotic-naive first-episode psychosis patients and 19 age- and sex-matched healthy controls were examined using high-resolution Positron Emission Tomography (PET) and the high-affinity D2-R radioligand [11C]FLB457. The main outcome was D2-R binding potential (BPND) in thalamus, and it was predicted that patients would have lower binding. Diffusion tensor imaging (DTI) was performed in a subgroup of 11 patients and 15 controls. D2-R binding in whole thalamus was lower in patients compared with controls (Cohen's dz = -0.479, p = 0.026, Bayes Factor (BF) > 4). Among subregions, lower BPND was observed in the ROI representing thalamic connectivity to the frontal cortex (Cohen's dz = -0.527, p = 0.017, BF > 6). A meta-analysis, including the sample of this study, confirmed significantly lower thalamic D2-R availability in patients. Exploratory analyses suggested that patients had lower fractional anisotropy values compared with controls (Cohen's d = -0.692, p = 0.036) in the inferior thalamic radiation. The findings support the hypothesis of a dysregulation of thalamic dopaminergic neurotransmission in schizophrenia, and it is hypothesized that this could underlie a disturbance of thalamocortical connectivity.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy