SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1522 2586 ;pers:(Ortiz Nieto Francisco)"

Sökning: L773:1522 2586 > Ortiz Nieto Francisco

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Covaciu, Lucian, et al. (författare)
  • Human brain MR spectroscopy thermometry using metabolite aqueous-solution calibrations
  • 2010
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1053-1807 .- 1522-2586. ; 31:4, s. 807-814
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To estimate absolute brain temperature using proton MR spectroscopy ((1)H-MRS) and mean brain-body temperature difference of healthy human volunteers. MATERIALS AND METHODS: Chemical shift difference between temperature-dependent water spectral line position and temperature-stable metabolite spectral reference was used for the estimations of absolute brain temperature. Temperature calibrations constants were obtained from the spectra of the N-acetyl aspartate (NAA line at approximately 2.0 ppm), glycero-phosphocholine (GPC line at approximately 3.2 ppm), and creatine (Cr line at approximately 3.0 ppm) aqueous solutions with pH values within physiologically pertinent ranges. Single-voxel PRESS sequence (TR/TE 2000/80 ms) was used for this purpose. Brain temperature was determined by averaging the temperatures computed from water-Cho, water-Cr, and water-NAA chemical shift differences. RESULTS: The mean brain temperature of 18 healthy volunteers was 38.1 +/- 0.4 degrees C and mean brain-body (rectal) temperature difference was 1.3 +/- 0.4 degrees C. CONCLUSION: Improved accuracy of the temperature constants and averaging the temperatures computed from water-Cho, water-Cr, and water-NAA chemical shift differences increased the reliability of the brain temperature estimations.
  •  
2.
  • Weis, Jan, et al. (författare)
  • Assessment of lipids in skeletal muscle by LCModel and AMARES
  • 2009
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1053-1807 .- 1522-2586. ; 30:5, s. 1124-1129
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To process single voxel spectra of the human skeletal muscle by using an advanced method for accurate, robust, and efficient spectral fitting (AMARES) and by linear combination of model spectra (LCModel). To determine absolute concentrations of extra- (EMCL) and intramyocellular lipids (IMCL). MATERIALS AND METHODS: Single-voxel proton magnetic resonance spectroscopy (PRESS) was used to obtain the spectra of the calf muscles. Unsuppressed water line was used as a concentration reference. A new prior knowledge for AMARES was proposed to estimate the concentrations of EMCL and IMCL. The prior knowledge was derived from the spectrum of vegetable oil. The results were compared with the values estimated by LCModel. Absolute concentrations of total lipid content in millimoles per kilogram wet weight were used for the comparisons. RESULTS: Absolute concentrations of total lipid content in skeletal muscle were estimated by AMARES and LCModel. Very good correlation of the total fat (EMCL + IMCL) and IMCL concentrations was achieved between both data processing approaches. CONCLUSION: Assessment the absolute concentrations of muscular lipids by AMARES and LCModel can be performed with comparable accuracy.
  •  
3.
  • Weis, Jan, et al. (författare)
  • MR spectroscopy of the human prostate using surface coil at 3 T : Metabolite ratios, age-dependent effects, and diagnostic possibilities
  • 2011
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1053-1807 .- 1522-2586. ; 34:6, s. 1277-1284
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To measure prostate spectra of healthy volunteers using a surface coil, to demonstrate age-dependent effects, and to investigate diagnostic possibilities for prostate cancer detection. MATERIALS AND METHODS: Single-voxel and 2D magnetic resonance spectroscopic imaging (MRSI) spectra of 51 healthy volunteers with biopsy-proven prostate carcinoma of 20 patients for comparison were measured and processed using the LCModel. The mean normalized spectra and mean metabolite-to-citrate intensity ratios were computed. RESULTS: Metabolite-to-citrate ratios of healthy volunteers were lower in the older group (>51 years) than in the younger group (<45 years). The peripheral zone (PZ) revealed a lower metabolite-to-citrate intensity ratio than the central gland (CG). Age-related differences in metabolite-to-citrate ratio were insignificant in the voxels with predominantly CG tissue, whereas significant differences were found in the PZ. Sensitivity in detecting prostate cancer by single-voxel spectroscopy (SVS) and 2D MRSI was 75% and 80%, respectively. CONCLUSION: SVS and 2D MRSI of the prostate at 3 T, using a surface coil, are useful in situations when insertion of the endorectal coil into the rectum is difficult or impossible. Our findings of age-dependent effects may be of importance for the analysis of patient spectra.
  •  
4.
  • Weis, Jan, 1956-, et al. (författare)
  • Quantification of metabolite concentrations in benign and malignant prostate tissues using 3D proton MR spectroscopic imaging
  • 2017
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1053-1807 .- 1522-2586. ; 45:4, s. 1232-1240
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To estimate concentrations of choline (Cho), spermine (Spm), and citrate (Cit) in prostate tissue using 3D proton magnetic resonance spectroscopic imaging (MRSI) with water as an internal concentration reference as well as to assess the relationships between the measured metabolites and also between the metabolites and apparent diffusion coefficient (ADC).MATERIALS AND METHODS: Forty-six prostate cancer patients were scanned at 3T. Spectra were acquired with the point-resolved spectroscopy (PRESS) localization technique. Single-voxel spectra of four healthy volunteers were used to estimate T1 relaxation time of Spm. Spm, Cho concentrations, and ADC values of benign prostate tissues were correlated with Cit content.RESULTS: The T1 value, 708 ± 132 msec, was estimated for Spm. Mean concentrations in the benign peripheral zone (PZ) were Cho, 4.5 ± 1 mM, Spm, 13.0 ± 4.4 mM, Cit, 64.4 ± 16.1 mM. Corresponding values in the benign central gland (CG) were Cho, 3.6 ± 1 mM, Spm, 13.3 ± 4.5 mM, Cit, 34.3 ± 12.9 mM. Concentrations of Cit and Spm were positively correlated in the benign PZ zone (r = 0.730) and CG (r = 0.664). Positive correlation was found between Cit and Cho in the benign CG (r = 0.705). Whereas Cit and ADC were positively correlated in the benign PZ (r = 0.673), only low correlation was found in CG (r = 0.265).CONCLUSION: We have shown that it is possible to perform water-referenced quantitative 3D MRSI of the prostate at the cost of a relatively short prolongation of the acquisition time. The individual metabolite concentrations provide additional information compared to the previously used metabolite-to-citrate ratios.
  •  
5.
  • Weis, Jan, et al. (författare)
  • Short echo time MR spectroscopy of brain tumors : grading of cerebral gliomas by correlation analysis of normalized spectral amplitudes
  • 2010
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1053-1807 .- 1522-2586. ; 31:1, s. 39-45
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To process single voxel spectra of low- and high-grade gliomas. To propose correlation analysis of the scatter plots of normalized spectral amplitudes as a pattern recognition tool for the classification (grading) of brain tumors. To propose a spectrum processing approach that improves the differentiation of proton spectra with dominating macromolecule and lipid peaks. MATERIALS AND METHODS: LCModel was used to process spectra. Mean metabolite concentrations and mean normalized spectra were obtained for normal white matter and for gliomas. The mean spectra of macromolecules and lipids (ML) in the range 1.4-0.9 ppm, and mean difference spectra (DS) without ML and lactate were computed. Correlation analysis of the scatter plot of the patient and mean normalized spectral amplitudes and dispersion of the scatter plot points were used for classification and grading of tumors. RESULTS: It was found advantageous to perform the classifications using DS spectra. The shape of ML spectrum and concentration of tCr seem to be a good markers for glioma grade. CONCLUSION: Combining a qualitative comparison of the patient and mean DS spectra of the tumors using correlation analysis of normalized spectra amplitudes with a quantitative comparison of metabolite concentrations is a powerful tool in studying brain lesions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy