SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1522 2586 ;pers:(Wåhlin Anders)"

Sökning: L773:1522 2586 > Wåhlin Anders

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dunås, Tora, et al. (författare)
  • Accuracy of blood flow assessment in cerebral arteries with 4D flow MRI : Evaluation with three segmentation methods
  • 2019
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1053-1807 .- 1522-2586. ; 50:2, s. 511-518
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Accelerated 4D flow MRI allows for high‐resolution velocity measurements with whole‐brain coverage. Such scans are increasingly used to calculate flow rates of individual arteries in the vascular tree, but detailed information about the accuracy and precision in relation to different postprocessing options is lacking.Purpose: To evaluate and optimize three proposed segmentation methods and determine the accuracy of in vivo 4D flow MRI blood flow rate assessments in major cerebral arteries, with high‐resolution 2D PCMRI as a reference.Study Type: Prospective.Subjects: Thirty‐five subjects (20 women, 79 ± 5 years, range 70–91 years).Field Strength/Sequence: 4D flow MRI with PC‐VIPR and 2D PCMRI acquired with a 3 T scanner.Assessment: We compared blood flow rates measured with 4D flow MRI, to the reference, in nine main cerebral arteries. Lumen segmentation in the 4D flow MRI was performed with k‐means clustering using four different input datasets, and with two types of thresholding methods. The threshold was defined as a percentage of the maximum intensity value in the complex difference image. Local and global thresholding approaches were used, with evaluated thresholds from 6–26%.Statistical Tests: Paired t‐test, F‐test, linear correlation (P < 0.05 was considered significant) along with intraclass correlation (ICC).Results: With the thresholding methods, the lowest average flow difference was obtained for 20% local (0.02 ± 15.0 ml/min, ICC = 0.97, n = 310) or 10% global (0.08 ± 17.3 ml/min, ICC = 0.97, n = 310) thresholding with a significant lower standard deviation for local (F‐test, P = 0.01). For all clustering methods, we found a large systematic underestimation of flow compared with 2D PCMRI (16.1–22.3 ml/min).Data Conclusion: A locally adapted threshold value gives a more stable result compared with a globally fixed threshold. 4D flow with the proposed segmentation method has the potential to become a useful reliable clinical tool for assessment of blood flow in the major cerebral arteries.Level of Evidence: 2Technical Efficacy: Stage 2
  •  
2.
  • Holmgren, Madelene, et al. (författare)
  • Assessment of Cerebral Blood Flow Pulsatility and Cerebral Arterial Compliance With 4D Flow MRI
  • 2020
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley-Blackwell. - 1053-1807 .- 1522-2586. ; 51:5, s. 1516-1525
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Four-dimensional flow magnetic resonance imaging (4D flow MRI) enables efficient investigation of cerebral blood flow pulsatility in the cerebral arteries. This is important for exploring hemodynamic mechanisms behind vascular diseases associated with arterial pulsations.PURPOSE: To investigate the feasibility of pulsatility assessments with 4D flow MRI, its agreement with reference two-dimensional phase-contrast MRI (2D PC-MRI) measurements, and to demonstrate how 4D flow MRI can be used to assess cerebral arterial compliance and cerebrovascular resistance in major cerebral arteries.STUDY TYPE: Prospective.SUBJECTS: Thirty-five subjects (20 women, 79 ± 5 years, range 70-91 years).FIELD STRENGTH/SEQUENCE: 4D flow MRI (PC-VIPR) and 2D PC-MRI acquired with a 3T scanner.ASSESSMENT: Time-resolved flow was assessed in nine cerebral arteries. From the pulsatile flow waveform in each artery, amplitude (ΔQ), volume load (ΔV), and pulsatility index (PI) were calculated. To reduce high-frequency noise in the 4D flow MRI data, the flow waveforms were low-pass filtered. From the total cerebral blood flow, total PI (PItot ), total volume load (ΔVtot ), cerebral arterial compliance (C), and cerebrovascular resistance (R) were calculated.STATISTICAL TESTS: Two-tailed paired t-test, intraclass correlation (ICC).RESULTS: There was no difference in ΔQ between 4D flow MRI and the reference (0.00 ± 0.022 ml/s, mean ± SEM, P = 0.97, ICC = 0.95, n = 310) with a cutoff frequency of 1.9 Hz and 15 cut plane long arterial segments. For ΔV, the difference was -0.006 ± 0.003 ml (mean ± SEM, P = 0.07, ICC = 0.93, n = 310) without filtering. Total R was 11.4 ± 2.41 mmHg/(ml/s) (mean ± SD) and C was 0.021 ± 0.009 ml/mmHg (mean ± SD). ΔVtot was 1.21 ± 0.29 ml (mean ± SD) with an ICC of 0.82 compared with the reference. PItot was 1.08 ± 0.21 (mean ± SD).DATA CONCLUSION: We successfully assessed 4D flow MRI cerebral arterial pulsatility, cerebral arterial compliance, and cerebrovascular resistance. Averaging of multiple cut planes and low-pass filtering was necessary to assess accurate peak-to-peak features in the flow rate waveforms.LEVEL OF EVIDENCE: 2Technical Efficacy Stage: 2
  •  
3.
  • Schrauben, Eric, et al. (författare)
  • Fast 4D flow MRI intracranial segmentation and quantification in tortuous arteries
  • 2015
  • Ingår i: Journal of Magnetic Resonance Imaging. - : John Wiley & Sons. - 1053-1807 .- 1522-2586. ; 42:5, s. 1458-1464
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeTo describe, validate, and implement a centerline processing scheme (CPS) for semiautomated segmentation and quantification in carotid siphons of healthy subjects. 4D flow MRI enables blood flow measurement in all major cerebral arteries with one scan. Clinical translational hurdles are time demanding postprocessing and user-dependence induced variability during analysis. Materials and MethodsA CPS for 4D flow data was developed to automatically separate cerebral artery trees. Flow parameters were quantified at planes along the centerline oriented perpendicular to the vessel path. At 3T, validation against 2D phase-contrast (PC) magnetic resonance imaging (MRI) and 4D flow manual processing was performed on an intracranial flow phantom for constant flow, while pulsatile flow validation was performed in the internal carotid artery (ICA) of 10 healthy volunteers. The CPS and 4D manual processing times were measured and compared. Flow and area measurements were also demonstrated along the length of the ICA siphon. ResultsPhantom measurements for area and flow were highly correlated between the CPS and 2D measurements (area: R=0.95, flow: R=0.94), while in vivo waveforms were highly correlated (R=0.93). Processing time was reduced by a factor of 4.6 compared with manual processing. Whole ICA measurements revealed a significantly decreased area in the most distal segment of the carotid siphon (P=0.0017), with flow unchanged (P=0.84). ConclusionThis study exhibits fast semiautomated analysis of intracranial 4D flow MRI. Internal consistency was shown through flow conservation along the tortuous ICA siphon, which is typically difficult to assess. J. Magn. Reson. Imaging 2015;42:1458-1464.
  •  
4.
  • Wåhlin, Anders, et al. (författare)
  • Phase contrast MRI quantification of pulsatile volumes of brain arteries, veins, and cerebrospinal fluids compartments : repeatability and physiological interactions
  • 2012
  • Ingår i: Journal of Magnetic Resonance Imaging. - : John Wiley & Sons. - 1053-1807 .- 1522-2586. ; 35:5, s. 1055-1062
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To study measurement repeatability and physiological determinants on measurement stability for phase contrast MRI (PC-MRI) measurements of cyclic volume changes (ΔV) of brain arteries, veins, and cerebrospinal fluid (CSF) compartments.MATERIALS AND METHODS: Total cerebral blood flow (tCBF), total internal jugular flow (tJBF) and spinal CSF flow at C2-C3 level and CSF in the aqueduct was measured using five repetitions in 20 healthy subjects. After subtracting net flow, waveforms were integrated to calculate ΔV of arterial, venous, and cerebrospinal fluid compartments. The intraclass correlation coefficient (ICC) was used to measure repeatability. Systematic errors were investigated by a series of phantom measurements.RESULTS: For ΔV calculated from tCBF, tJBF and both CSF waveforms, the ICC was ≥0.85. ΔV from the tCBF waveform decreased linearly between repetitions (P = 0.012). Summed CSF and venous volume being shifted out from the cranium was correlated with ΔV calculated from the tCBF waveform (r = 0.75; P < 0.001). Systematic errors increased at resolutions <4 pixels per diameter.CONCLUSION: Repeatability of ΔV calculated from tCBF, tJBF, and CSF waveforms allows useful interpretations. The subject's time in the MR system and imaging resolution should be considered when interpreting volume changes. Summed CSF and venous volume changes was associated with arterial volume changes.J. Magn. Reson. Imaging 2011;. © 2011 Wiley Periodicals, Inc.
  •  
5.
  • Zarrinkoob, Laleh, 1982-, et al. (författare)
  • Cerebral blood flow patterns in patients with low-flow carotid artery stenosis, a 4D-PCMRI assessment
  • 2024
  • Ingår i: Journal of Magnetic Resonance Imaging. - : John Wiley & Sons. - 1053-1807 .- 1522-2586.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Compromised cerebral blood flow can contribute to future ischemic events in patients with symptomatic carotid artery disease. However, there is limited knowledge of the effects on cerebral hemodynamics resulting from a reduced internal carotid artery (ICA) blood flow rate (BFR).Purpose: Investigate how reduced ICA-BFR, relates to BFR in the cerebral arteries.Study Type: Prospective.Subjects: Thirty-eight patients, age 72 ± 6 years (11 female).Field Strength/Sequence: 3-Tesla, four-dimensional phase-contrast magnetic resonance imaging (4D-PCMRI).Assessment: Patients with ischemic stroke or transient ischemic attack were evaluated regarding the degree of stenosis. 4D-PCMRI was used to measure cerebral BFR in 38 patients with symptomatic carotid stenosis (≥50%). BFR in the cerebral arteries was assessed in two subgroups based on symptomatic ICA-BFR: reduced ICA-flow (<160 mL/minutes) and preserved ICA-flow (≥160 mL/minutes). BFR laterality was defined as a difference in the paired ipsilateral-contralateral arteries.Statistical Tests: Patients were grouped based on ICA-BFR (reduced vs. preserved). Statistical tests (independent sample t-test/paired t-test) were used to compare groups and hemispheres. Significance was determined at P < 0.05.Results: The degree of stenosis was not significantly different, 80% (95% confidence interval [CI] = 73%–87%) in the reduced ICA-flow vs. 72% (CI = 66%–76%) in the preserved ICA-flow; P = 0.09. In the reduced ICA-flow group, a significantly reduced BFR was found in the ipsilateral middle cerebral artery and anterior cerebral artery (A1), while significantly increased in the contralateral A1. Retrograde BFR was found in the posterior communicating artery and ophthalmic artery. Significant BFR laterality was present in all paired arteries in the reduced ICA-flow group, contrasting the preserved ICA-flow group (P = 0.14–0.93).Data Conclusions: 4D-PCMRI revealed compromised cerebral BFR due to carotid stenosis, not possible to detect by solely analyzing the degree of stenosis. In patients with reduced ICA-flow, collaterals were not sufficient to maintain symmetrical BFR distribution to the two hemispheres.Evidence Level: 2.Technical Efficacy: Stage 3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy