SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1524 4636 ;pers:(Olofsson Sven Olof 1947)"

Sökning: L773:1524 4636 > Olofsson Sven Olof 1947

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adiels, Martin, 1976, et al. (författare)
  • Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome.
  • 2008
  • Ingår i: Arteriosclerosis, thrombosis, and vascular biology. - 1524-4636 .- 1079-5642. ; 28:7, s. 1225-36
  • Forskningsöversikt (refereegranskat)abstract
    • Insulin resistance is a key feature of the metabolic syndrome and often progresses to type 2 diabetes. Both insulin resistance and type 2 diabetes are characterized by dyslipidemia, which is an important and common risk factor for cardiovascular disease. Diabetic dyslipidemia is a cluster of potentially atherogenic lipid and lipoprotein abnormalities that are metabolically interrelated. Recent evidence suggests that a fundamental defect is an overproduction of large very low-density lipoprotein (VLDL) particles, which initiates a sequence of lipoprotein changes, resulting in higher levels of remnant particles, smaller LDL, and lower levels of high-density liporotein (HDL) cholesterol. These atherogenic lipid abnormalities precede the diagnosis of type 2 diabetes by several years, and it is thus important to elucidate the mechanisms involved in the overproduction of large VLDL particles. Here, we review the pathophysiology of VLDL biosynthesis and metabolism in the metabolic syndrome. We also review recent research investigating the relation between hepatic accumulation of lipids and insulin resistance, and sources of fatty acids for liver fat and VLDL biosynthesis. Finally, we briefly discuss current treatments for lipid management of dyslipidemia and potential future therapeutic targets.
  •  
2.
  • Adiels, Martin, 1976, et al. (författare)
  • Overproduction of VLDL1 driven by hyperglycemia is a dominant feature of diabetic dyslipidemia
  • 2005
  • Ingår i: Arterioscler Thromb Vasc Biol. - 1524-4636 .- 1079-5642. ; 25:8, s. 1697-703
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: We sought to compare the synthesis and metabolism of VLDL1 and VLDL2 in patients with type 2 diabetes mellitus (DM2) and nondiabetic subjects. METHODS AND RESULTS: We used a novel multicompartmental model to simultaneously determine the kinetics of apolipoprotein (apo) B and triglyceride (TG) in VLDL1 and VLDL2 after a bolus injection of [2H3]leucine and [2H5]glycerol and to follow the catabolism and transfer of the lipoprotein particles. Our results show that the overproduction of VLDL particles in DM2 is explained by enhanced secretion of VLDL1 apoB and TG. Direct production of VLDL2 apoB and TG was not influenced by diabetes per se. The production rates of VLDL1 apoB and TG were closely related, as were the corresponding pool sizes. VLDL1 and VLDL2 compositions did not differ in subjects with DM2 and controls, and the TG to apoB ratio of newly synthesized particles was very similar in the 2 groups. Plasma glucose, insulin, and free fatty acids together explained 55% of the variation in VLDL1 TG production rate. CONCLUSIONS: Insulin resistance and DM2 are associated with excess hepatic production of VLDL1 particles similar in size and composition to those in nondiabetic subjects. We propose that hyperglycemia is the driving force that aggravates overproduction of VLDL1 in DM2.
  •  
3.
  • Asp, Lennart, 1965, et al. (författare)
  • Role of ADP ribosylation factor 1 in the assembly and secretion of ApoB-100-containing lipoproteins
  • 2005
  • Ingår i: Arterioscler Thromb Vasc Biol. - 1524-4636. ; 25:3, s. 566-70
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: We investigated the role of ADP ribosylation factor 1 (ARF1) in the assembly of very-low-density lipoproteins (VLDLs). METHODS AND RESULTS: The dominant-negative ARF1 mutant, T31N, decreased the assembly of apoB-100 VLDL 1 (Svedberg floatation units [Sf] 60 to 400) by 80%. The decrease coincided with loss of coatamer I (COPI) from the Golgi apparatus and inhibition of anterograde transport, as demonstrated by time-lapse studies of the vesicular stomatitis virus G protein. The VLDL 1 assembly was also completely inhibited at 15 degrees C. Thus, the antegrade transport is essential for the assembly of VLDL 1. Intracellular localization of N-acetylgalactosaminyl transferase 2 indicated that the Golgi apparatus was at least partly intact when the VLDL assembly was inhibited. Transient transfection with phospholipase D 1 increased the assembly of VLDL 1 and VLDL 2 (Sf 20 to 60). Overexpression of ARF1 in stably transfected McA-RH7777 cells increased the secretion of VLDL 2 but not of VLDL 1, which was dependent on the availability of oleic acid. Secretion of VLDL 1 increased with increasing amounts of oleic acid, and VLDL 2 secretion decreased simultaneously. CONCLUSIONS: Overexpression of ARF1 increased the assembly of VLDL 2 but not of VLDL 1, whose production was dependent on both anterograde transport and the availability of fatty acids.
  •  
4.
  • Boström, Pontus, 1982, et al. (författare)
  • Cytosolic lipid droplets increase in size by microtubule-dependent complex formation
  • 2005
  • Ingår i: Arterioscler Thromb Vasc Biol. - 1524-4636. ; 25:9, s. 1945-51
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Adipocyte differentiation-related protein (ADRP)-containing lipid droplets have an essential role in the development of insulin resistance and atherosclerosis. Such droplets form in a cell-free system with a diameter of 0.1 to 0.4 microm, while the droplets present in cells vary in size, from small to very large, suggesting that the droplets can increase in size after being assembled. We have addressed this possibility. METHODS AND RESULTS: Experiments in NIH 3T3 cells demonstrated that the lipid droplets could increase in size independently of triglyceride biosynthesis. NIH 3T3 cells were either microinjected with ADRP-GFP (green fluorescent protein) or stained with Nile Red and followed by confocal microscopy and time-lapse recordings. The results showed that lipid droplets formed complexes with each other, with a volume equal to the sum of the merging particles. The formation of complexes could be inhibited by the nocodazole-induced depolymerization of the microtubules; thus, the process is dependent on microtubules. The presence of dynein on ADRP-containing droplets supports a role for this motor protein. CONCLUSIONS: Lipid droplets can grow after they have been assembled. This increase in size is independent of triglyceride biosynthesis and involves formation of complexes, which requires intact microtubules.
  •  
5.
  • Boström, Pontus, 1982, et al. (författare)
  • Hypoxia converts human macrophages into triglyceride-loaded foam cells.
  • 2006
  • Ingår i: Arteriosclerosis, thrombosis, and vascular biology. - 1524-4636. ; 26:8, s. 1871-6
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Atherosclerotic lesions have regions that are hypoxic. Because the lesion contains macrophages that are loaded with lipid, we investigated whether hypoxia can influence the accumulation of lipids in these cells. METHODS AND RESULTS: Exposure of human macrophages to hypoxia for 24 hours resulted in an increased formation of cytosolic lipid droplets and an increased accumulation of triglycerides. Exposure of the macrophages to oxidized low-density lipoprotein (oxLDL) increased the accumulation of cytosolic lipid droplets because of an increase in cellular cholesterol esters. The accumulation of lipid droplets in oxLDL-treated cells was further increased after hypoxia, caused by an increased level of triglycerides. Expression analyses combined with immunoblot or RT-PCR demonstrated that hypoxia increased the expression of several genes that could promote the accumulation of lipid droplets. Hypoxia increased the mRNA and protein levels of adipocyte differentiation-related protein (ADRP). It is well known that an increased expression of ADRP increases the formation of lipid droplets. Hypoxia decreased the expression of enzymes involved in beta-oxidation (acyl-coenzyme A synthetase and acyl-coenzyme A dehydrogenase) and increased the expression of stearoyl-coenzyme A desaturase, an important enzyme in the fatty acid biosynthesis. Moreover, exposure to hypoxia decreased the rate of beta-oxidation, whereas the accumulation of triglycerides increased. CONCLUSIONS: The results demonstrate that exposure of human macrophages to hypoxia causes an accumulation of triglyceride-containing cytosolic lipid droplets. This indicates that the hypoxia present in atherosclerotic lesions can contribute to the formation of the lipid-loaded macrophages that characterize the lesion and to the accumulation of triglycerides in such lesions.
  •  
6.
  • Magnusson, Björn, 1976, et al. (författare)
  • Adipocyte differentiation-related protein promotes fatty acid storage in cytosolic triglycerides and inhibits secretion of very low-density lipoproteins
  • 2006
  • Ingår i: Arterioscler Thromb Vasc Biol. - 1524-4636. ; 26:7, s. 1566-71
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: We investigated the role of adipocyte differentiation-related protein (ADRP) in triglyceride turnover and in the secretion of very low-density lipoprotein (VLDL) from McA-RH7777 cells and primary rat hepatocytes. METHODS AND RESULTS: An increase in the expression of ADRP increased triglyceride accumulation in cytosolic lipid droplets and prevented the incorporation of fatty acids into secretable triglycerides, thereby reducing the secretion of triglycerides as well as of apolipoprotein B-100 (apoB-100) and apoB-48 VLDL. The ability of ADRP to block the secretion of apoB-100 VLDL1 decreased with increasing quantities of fatty acids in the medium, indicating a saturable process and emphasizing the importance of sequestering of fatty acids for the effect of ADRP on VLDL secretion. Knockdown (small interfering RNA) of ADRP decreased the pool of cytosolic lipid droplets but increased only the secretion of apoB-48 VLDL1. Additionally, there was an increased flow of fatty acids into beta-oxidation. CONCLUSIONS: ADRP is essential for the accumulation of triglycerides in cytosolic lipid droplets. An increase in ADRP prevents the formation of VLDL by diverting fatty acids from the VLDL assembly pathway into cytosolic triglycerides, whereas a decrease of the protein increases the sorting of fatty acids to beta-oxidation and promotes the secretion of apoB-48 VLDL1.
  •  
7.
  • Olofsson, Sven-Olof, 1947, et al. (författare)
  • Apolipoprotein B Secretory Regulation by Degradation
  • 2012
  • Ingår i: Arteriosclerosis Thrombosis and Vascular Biology. - : Ovid Technologies (Wolters Kluwer Health). - 1079-5642 .- 1524-4636. ; 32:6, s. 1334-1338
  • Tidskriftsartikel (refereegranskat)abstract
    • In this short review, we discuss apolipoprotein B100 and the assembly of very low-density lipoproteins. In particular, we address the nature and importance of co- and posttranslational degradation of apolipoprotein B100 during the assembly process. We also provide a short historical background to the development of the current model for the degradation of apolipoprotein B100. (Arterioscler Thromb Vasc Biol. 2012;32:1334-1338)
  •  
8.
  • Taskinen, Marja-Riitta, et al. (författare)
  • Dual metabolic defects are required to produce hypertriglyceridemia in obese subjects.
  • 2011
  • Ingår i: Arteriosclerosis, thrombosis, and vascular biology. - 1524-4636 .- 1079-5642. ; 31:9, s. 2144-50
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity increases the risk of cardiovascular disease and premature death. However, not all obese subjects develop the metabolic abnormalities associated with obesity. The aim of this study was to clarify the mechanisms that induce dyslipidemia in obese subjects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy