SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1528 1159 ;lar1:(gih)"

Sökning: L773:1528 1159 > Gymnastik- och idrottshögskolan

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Eva A, et al. (författare)
  • Diverging intramuscular activity patterns in back and abdominal muscles during trunk rotation.
  • 2002
  • Ingår i: Spine. - : Ovid Technologies (Wolters Kluwer Health). - 1528-1159 .- 0362-2436. ; 27:6, s. E152-60
  • Tidskriftsartikel (refereegranskat)abstract
    • STUDY DESIGN: An intramuscular electromyographic study was performed on trunk rotations during sitting and standing. OBJECTIVE: The aim was to provide new information on activation levels for deep trunk muscles in various unresisted and resisted trunk rotations. SUMMARY AND BACKGROUND DATA: Frequent daily trunk twisting and decreased maximal strength during trunk rotation have been associated with low back pain or sciatic pain. However, the involvement of deep trunk muscles during different trunk rotations is relatively unknown. METHODS: Ten healthy subjects participated. Fine-wire electrodes were inserted, under ultrasound guidance, into psoas, quadratus lumborum, the superficial medial lumbar erector spinae (ES-s, multifidus) and its deep lateral portion (ES-d, iliocostalis), iliacus, rectus abdominis, obliquus externus, and obliquus internus. RESULTS: The highest involvement for all muscles was observed on the ipsilateral side, in maximal trunk twists with shoulder resistance, except obliquus externus, which showed a dominant contralateral side, and rectus abdominis, which was little activated in all rotations. In contrast, maximal trunk twist without shoulder resistance, i.e., freely performed, resulted generally in lower levels for all muscles involved and in a shift of side dominance for the lumbar muscles quadratus lumborum, psoas, and ES-s. CONCLUSIONS: During trunk rotations the activity patterns for various trunk muscles could drastically change, and even be the opposite, between the two body sides, within the same type of task, depending on several factors such as initial position, effort level, sitting or standing, and external shoulder resistance.
  •  
2.
  • Daggfeldt, Karl, et al. (författare)
  • The visible human anatomy of the lumbar erector spinae.
  • 2000
  • Ingår i: Spine. - : Ovid Technologies (Wolters Kluwer Health). - 0362-2436 .- 1528-1159. ; 25:21, s. 2719-25
  • Tidskriftsartikel (refereegranskat)abstract
    • STUDY DESIGN: Image data of the male and female cadavers from the Visible Human Project were visualized and quantified. OBJECTIVE: To clarify the anatomy of the lumbar part of the human lumbar erector spinae muscles. SUMMARY OF BACKGROUND DATA: Recent studies have shown discrepancies in the description of the anatomy of the lumbar part of the lumbar erector spinae. The main differences concern whether lumbar fascicles of iliocostalis lumborum exist and whether the lumbar fascicles have direct attachments to the ilium or attach via the erector spinae aponeurosis. With the Visible Human Project from the U.S. National Library of Medicine, a new powerful basis for anatomic investigation has become available. METHODS: Software was produced to visualize sections oriented in any direction and with maximum resolution of the Visible Human male and female. Three-dimensional coordinates of anatomic structures in the image space could be marked in the cross-sectional images. The geometry and the physiologic cross-sectional areas of the erector spinae fascicles of lumbar origin were thus derived. RESULTS AND CONCLUSIONS: The study supports a classification of the lateral fascicles of the lumbar part of the lumbar erector spinae as part of iliocostalis lumborum. In both the male and the female, a large part of the erector spinae fibers of lumbar origin attached to the erector spinae aponeurosis. These results are of importance for biomechanical analysis of force transmission in the lumbar spine.
  •  
3.
  • Hodges, Paul, et al. (författare)
  • Intervertebral stiffness of the spine is increased by evoked contraction of transversus abdominis and the diaphragm : in vivo porcine studies.
  • 2003
  • Ingår i: Spine. - 1528-1159. ; 28:23, s. 2594-601
  • Tidskriftsartikel (refereegranskat)abstract
    • STUDY DESIGN: In vivo porcine study of intervertebral kinematics. OBJECTIVES: This study investigated the effect of transversus abdominis and diaphragm activity, and increased intra-abdominal pressure on intervertebral kinematics in porcine lumbar spines. BACKGROUND: Studies of trunk muscle recruitment in humans suggest that diaphragm and transversus abdominis activity, and the associated intra-abdominal pressure contribute to the control of intervertebral motion. However, this has not been tested in vivo. METHODS: Relative intervertebral motion of the L3 and L4 vertebrae and the stiffness at L4 were measured in response to displacements of the L4 vertebra imposed via a device fixed to the L4 vertebral body. In separate trials, diaphragm and transversus abdominis activity was evoked by stimulation of the phrenic nerves and via electrodes threaded through the abdominal wall. RESULTS: When intra-abdominal pressure was increased by diaphragm or transversus abdominis stimulation, the relative intervertebral displacement of the L3 and L4 vertebrae was reduced and the stiffness of L4 was increased for caudal displacements. There was no change in either parameter for rostral displacements. In separate trials, the diaphragm crurae and the fascial attachments of transversus abdominis were cut, but intra-abdominal pressure was increased. In these trials, the reduction in intervertebral motion was similar to trials with intact attachments for caudal motion, but was increased for rostral trials. CONCLUSIONS: The results of these studies indicate that elevated intra-abdominal pressure, and contraction of diaphragm and transversus abdominis provide a mechanical contribution to the control of spinal intervertebral stiffness. Furthermore, the effect is modified by the muscular attachments to the spine.
  •  
4.
  • Huang, Q M, et al. (författare)
  • Intramuscular myoelectric activity and selective coactivation of trunk muscles during lateral flexion with and without load.
  • 2001
  • Ingår i: Spine. - : Ovid Technologies (Wolters Kluwer Health). - 0362-2436 .- 1528-1159. ; 26:13, s. 1465-72
  • Tidskriftsartikel (refereegranskat)abstract
    • STUDY DESIGN: Myoelectric activity of trunk muscles was measured intramuscularly in six healthy subjects as they maintained static trunk postures at 0 degrees, 15 degrees, and 30 degrees of lateral bending, unloaded or holding a 20-kg load in one hand alongside the body. OBJECTIVE: To determine the position and load dependency of the agonistic and antagonistic myoelectric responses of deep and superficial trunk lateral flexor muscles. SUMMARY OF BACKGROUND DATA: Loading of the trunk in lateral bending is associated with incidences of low back pain. The neuromotor control of muscles surrounding the spine may be decisive for its vulnerability. Earlier documentation of the activation pattern of trunk muscles, particularly those situated deeply, is incomplete. METHODS: Trunk angle was measured between S1-C7 and the vertical with a protractor. Electromyographic activity was recorded unilaterally from eight trunk muscles using intramuscular fine-wire electrodes inserted under the guidance of ultrasound. RESULTS: The electromyographic data showed that all muscles on the side contralateral to the load, except rectus abdominis, had their highest activity while loaded in the position most laterally flexed to the loaded side. The degree of bilateral coactivation was greater for the ventral than for the dorsal muscles. CONCLUSIONS: The myoelectric responses of most lumbar trunk muscles to static lateral flexion were dependent on trunk position and loading. The abdominal muscles demonstrated more coactivation than the other trunk muscles, and thus appeared to contribute more to trunk stabilization in laterally bent and loaded trunk positions.
  •  
5.
  • Oddsson, L I, et al. (författare)
  • Interaction between voluntary and postural motor commands during perturbed lifting.
  • 1999
  • Ingår i: Spine. - : Ovid Technologies (Wolters Kluwer Health). - 0362-2436 .- 1528-1159. ; 24:6, s. 545-52
  • Tidskriftsartikel (refereegranskat)abstract
    • STUDY DESIGN: An experimental study was conducted to evaluate the effect of an unexpected postural perturbation during a lifting task. OBJECTIVES: To investigate electromyographic responses in the erector spinae to a postural perturbation, simulating slipping, during an ongoing voluntary lifting movement. It was hypothesized that specific combinations of voluntary movement and postural perturbation present a situation in which injury caused by a rapid switch between conflicting motor commands can occur. SUMMARY OF BACKGROUND DATA: Studies of postural perturbations have mainly focused on behavior during static tasks such as quiet, upright standing. To date, there are no published studies of the effect of a perturbation during an ongoing voluntary lifting movement. METHODS: Subjects standing on a movable platform were exposed to random perturbations while lifting a 20-kg load. Muscle activity was recorded from flexor and extensor muscles of the trunk and hip. Trunk flexion angle in the sagittal plane was recorded with a video system. RESULTS: Perturbations forward were followed by an increased activity in erector spinae superimposed on the background activation present during the lift, indicating that both the voluntary and postural motor programs caused an activation of erector spinae. During backward perturbation, however, there was a sudden cessation of erector spinae activity followed by an extended period of rapid electromyographic amplitude fluctuations while the trunk was flexing, indicating an eccentric contraction of the erector spinae. CONCLUSIONS: This erratic behavior with large electromyographic amplitude fluctuations in the erector spinae after a backward slip during lifting may indicate a rapid switch between voluntary and postural motor programs that require conflicting functions of the back muscles. This may cause rapid force changes in load-carrying tissue, particularly in those surrounding the spine, thus increasing the risk of slip-and-fall-related back injuries.
  •  
6.
  • Tveit, P, et al. (författare)
  • Erector spinae lever arm length variations with changes in spinal curvature.
  • 1994
  • Ingår i: Spine. - 0362-2436 .- 1528-1159. ; 19:2, s. 199-204
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic resonance imaging was used to study the effect of different curvatures in the lumbar spine on lever arm lengths of the erector spinae musculature. Eleven subjects were instructed to simulate static lifts while lying supine in a magnetic resonance camera with the lumbar spine either in kyphosis or lordosis. A sagittal image of the spine was obtained to analyze the lumbosacral angle and to guide the imaging of transverse sections through each disc (L1/L2 to L5/S1). Images were analyzed for lever arm lengths of the erector spinae muscle (ES) and the erector spinae aponeurosis (ESA), the latter functioning as a tendon for superiorly positioned ES muscle portions. The lumbosacral angle (between superior surfaces of S1 and L4) averaged 44 degrees in the lordosed, 26 degrees in the kyphosed and 41 degrees in a neutral supine position. In lordosis, the lever arm lengths were significantly longer than in kyphosis for all levels, averaging 60-63 mm (ES) and 82-86 mm (ESA). The corresponding values for kyphosis were 49-57 mm (ES) and 67-77 mm (ESA), respectively. Thus, there was a considerable effect (10-24%) of lumbar curvature on lever arm lengths for the back extensor muscles. The change in leverage will affect the need for extensor muscle force and thus the magnitude of compression in the lumbar spine in loading situations such as lifting.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy