SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1529 2401 ;lar1:(umu)"

Sökning: L773:1529 2401 > Umeå universitet

  • Resultat 1-10 av 54
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Birznieks, Ingvars, et al. (författare)
  • Encoding of direction of fingertip forces by human tactile afferents
  • 2001
  • Ingår i: Journal of Neuroscience. - : Society for Neuroscience. - 0270-6474 .- 1529-2401. ; 21:20, s. 8222-8237
  • Tidskriftsartikel (refereegranskat)abstract
    • In most manipulations, we use our fingertips to apply time-varying forces to the target object in controlled directions. Here we used microneurography to assess how single tactile afferents encode the direction of fingertip forces at magnitudes, rates, and directions comparable to those arising in everyday manipulations. Using a flat stimulus surface, we applied forces to a standard site on the fingertip while recording impulse activity in 196 tactile afferents with receptive fields distributed over the entire terminal phalanx. Forces were applied in one of five directions: normal force and forces at a 20 degrees angle from the normal in the radial, distal, ulnar, or proximal directions. Nearly all afferents responded, and the responses in most slowly adapting (SA)-I, SA-II, and fast adapting (FA)-I afferents were broadly tuned to a preferred direction of force. Among afferents of each type, the preferred directions were distributed in all angular directions with reference to the stimulation site, but not uniformly. The SA-I population was biased for tangential force components in the distal direction, the SA-II population was biased in the proximal direction, and the FA-I population was biased in the proximal and radial directions. Anisotropic mechanical properties of the fingertip and the spatial relationship between the receptive field center of the afferent and the stimulus site appeared to influence the preferred direction in a manner dependent on afferent type. We conclude that tactile afferents from the whole terminal phalanx potentially contribute to the encoding of direction of fingertip forces similar to those that occur when subjects manipulate objects under natural conditions.
  •  
3.
  • Birznieks, Ingvars, et al. (författare)
  • Slowly adapting mechanoreceptors in the borders of the human fingernail encode fingertip forces
  • 2009
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 29:29, s. 9370-9379
  • Tidskriftsartikel (refereegranskat)abstract
    • There are clusters of slowly adapting (SA) mechanoreceptors in the skin folds bordering the nail. These "SA-IInail" afferents, which constitute nearly one fifth of the tactile afferents innervating the fingertip, possess the general discharge characteristics of slowly adapting type II (SA-II) tactile afferents located elsewhere in the glabrous skin of the human hand. Little is known about the signals in the SA-IInail afferents when the fingertips interact with objects. Here we show that SA-IInail afferents reliably respond to fingertip forces comparable to those arising in everyday manipulations. Using a flat stimulus surface, we applied forces to the finger pad while recording impulse activity in 17 SA-IInail afferents. Ramp-and-hold forces (amplitude 4 N, rate 10 N/s) were applied normal to the skin, and at 10, 20, or 30 degrees from the normal in eight radial directions with reference to the primary site of contact (25 force directions in total). All afferents responded to the force stimuli, and the responsiveness of all but one afferents was broadly tuned to a preferred direction of force. The preferred directions among afferents were distributed all around the angular space, suggesting that the population of SA-IInail afferents could encode force direction. We conclude that signals in the population of SA-IInail afferents terminating in the nail walls contain vectorial information about fingertip forces. The particular tactile features of contacted surfaces would less influence force-related signals in SA-IInail afferents than force-related signals present in afferents terminating in the volar skin areas that directly contact objects.
  •  
4.
  • Björkblom, Benny, et al. (författare)
  • Constitutively Active Cytoplasmic c-Jun N-Terminal Kinase 1 Is a Dominant Regulator of Dendritic Architecture: Role of Microtubule-Associated Protein 2 as an Effector
  • 2005
  • Ingår i: Journal of Neuroscience. - : Society for Neuroscience. - 0270-6474 .- 1529-2401. ; 25:27, s. 6350-6361
  • Tidskriftsartikel (refereegranskat)abstract
    • Normal functioning of the nervous system requires precise regulation of dendritic shape and synaptic connectivity. Here, we report a severe impairment of dendritic structures in the cerebellum and motor cortex of c-Jun N-terminal kinase 1 (JNK1)-deficient mice. Using an unbiased screen for candidate mediators, we identify the dendrite-specific high-molecular-weight microtubule-associated protein 2 (MAP2) as a JNK substrate in the brain. We subsequently show that MAP2 is phosphorylated by JNK in intact cells and that MAP2 proline-rich domain phosphorylation is decreased in JNK1-/- brain. We developed compartment-targeted JNK inhibitors to define whether a functional relationship exists between the physiologically active, cytosolic pool of JNK and dendritic architecture. Using these, we demonstrate that cytosolic, but not nuclear, JNK determines dendritic length and arbor complexity in cultured neurons. Moreover, we confirm that MAP2-dependent process elongation is enhanced after activation of JNK. Using JNK1-/- neurons, we reveal a dominant role for JNK1 over ERK in regulating dendritic arborization, whereas ERK only regulates dendrite shape under conditions in which JNK activity is low (JNK1-/- neurons). These results reveal a novel antagonism between JNK and ERK, potentially providing a mechanism for fine-tuning the dendritic arbor. Together, these data suggest that JNK phosphorylation of MAP2 plays an important role in defining dendritic architecture in the brain.
  •  
5.
  • Caleo, Matteo, et al. (författare)
  • Provision of brain-derived neurotrophic factor via anterograde transport from the eye preserves the physiological responses of axotomized geniculate neurons.
  • 2003
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 23:1, s. 287-96
  • Tidskriftsartikel (refereegranskat)abstract
    • The neurotrophic factors of the nerve growth factor family (neurotrophins) have been shown to promote neuronal survival after brain injury and in various models of neurodegenerative conditions. However, it has not been determined whether neurotrophin treatment results in the maintenance of function of the rescued cells. Here we have used the retrograde degeneration of geniculate neurons as a model system to evaluate neuronal rescue and sparing of function after administration of brain-derived neurotrophic factor (BDNF). Death of geniculate neurons was induced by a visual cortex lesion in adult rats, and exogenous BDNF was delivered to the axotomized geniculate cells via anterograde transport after injection into the eye. By microelectrode recordings from the geniculate in vivo we have measured several physiological parameters such as contrast threshold, spatial resolution (visual acuity), signal-to-noise ratio, temporal resolution, and response latency. In control lesioned animals we found that geniculate cell dysfunction precedes the onset of neuronal death, indicating that an assessment of neuronal number per se is not predictive of functional performance. The administration of BDNF resulted in a highly significant cell-saving effect up to 2 weeks after the cortical damage and maintained nearly normal physiological responses in the geniculate. This preservation of function in adult axotomized neurons suggests possible therapeutic applications of BDNF.
  •  
6.
  • Coutinho, Ana P, et al. (författare)
  • Induction of a parafacial rhythm generator by rhombomere 3 in the chick embryo.
  • 2004
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 24:42, s. 9383-9390
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of knock-out mice suggest that breathing at birth requires correct development of a specific hindbrain territory corresponding to rhombomeres (r) 3 and 4. Focusing on this territory, we examined the development of a neuronal rhythm generator in the chick embryo. We show that rhythmic activity in r4 is inducible after developmental stage 10 through interaction with r3. Although the nature of this interaction remains obscure, we find that the expression of Krox20, a segmentation gene responsible for specifying r3 and r5, is sufficient to endow other rhombomeres with the capacity to induce rhythmic activity in r4. Induction is robust, because it can be reproduced with r2 and r6 instead of r4 and with any hindbrain territory that normally expresses Krox20 (r3, r5) or can be forced to do so (r1, r4). Interestingly, the interaction between r4 and r3/r5 that results in rhythm production can only take place through the anterior border of r4, revealing a heretofore unsuspected polarity in individual rhombomeres. The r4 rhythm generator appears to be homologous to a murine respiratory parafacial neuronal system developing in r4 under the control of Krox20 and Hoxa1. These results identify a late role for Krox20 at the onset of neurogenesis.
  •  
7.
  • Diamond, Jonathan S., et al. (författare)
  • Rapid Visuomotor Corrective Responses during Transport of Hand-Held Objects Incorporate Novel Object Dynamics
  • 2015
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 35:29, s. 10572-10580
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous studies have shown that people are adept at learning novel object dynamics, linking applied force and motion, when performing reaching movements with hand-held objects. Here we investigated whether the control of rapid corrective arm responses, elicited in response to visual perturbations, has access to such newly acquired knowledge of object dynamics. Participants first learned to make reaching movements while grasping an object subjected to complex load forces that depended on the distance and angle of the hand from the start position. During a subsequent test phase, we examined grip and load force coordination during corrective arm movements elicited (within similar to 150 ms) in response to viewed sudden lateral shifts (1.5 cm) in target or object position. We hypothesized that, if knowledge of object dynamics is incorporated in the control of the corrective responses, grip force changes would anticipate the unusual load force changes associated with the corrective arm movements so as to support grasp stability. Indeed, we found that the participants generated grip force adjustments tightly coupled, both spatially and temporally, to the load force changes associated with the arm movement corrections. We submit that recently learned novel object dynamics are effectively integrated into sensorimotor control policies that support rapid visually driven arm corrective actions during transport of hand held objects.
  •  
8.
  •  
9.
  • Dimitriou, Michael (författare)
  • Human Muscle Spindle Sensitivity Reflects the Balance of Activity between Antagonistic Muscles
  • 2014
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 34:41, s. 13644-13655
  • Tidskriftsartikel (refereegranskat)abstract
    • Muscle spindles are commonly considered as stretch receptors encoding movement, but the functional consequence of their efferent control has remained unclear. The "alpha-gamma coactivation" hypothesis states that activity in a muscle is positively related to the output of its spindle afferents. However, in addition to the above, possible reciprocal inhibition of spindle controllers entails a negative relationship between contractile activity in one muscle and spindle afferent output from its antagonist. By recording spindle afferent responses from alert humans using microneurography, I show that spindle output does reflect antagonistic muscle balance. Specifically, regardless of identical kinematic profiles across active finger movements, stretch of the loaded antagonist muscle (i.e., extensor) was accompanied by increased afferent firing rates from this muscle compared with the baseline case of no constant external load. In contrast, spindle firing rates from the stretching antagonist were lowest when the agonist muscle powering movement (i.e., flexor) acted against an additional resistive load. Stepwise regressions confirmed that instantaneous velocity, extensor, and flexor muscle activity had a significant effect on spindle afferent responses, with flexor activity having a negative effect. Therefore, the results indicate that, as consequence of their efferent control, spindle sensitivity (gain) to muscle stretch reflects the balance of activity between antagonistic muscles rather than only the activity of the spindle-bearing muscle.
  •  
10.
  • Edin, Benoni B, et al. (författare)
  • Receptor encoding of moving tactile stimuli in humans. I. Temporal pattern of discharge of individual low-threshold mechanoreceptors.
  • 1995
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 15:1 Pt 2, s. 830-847
  • Tidskriftsartikel (refereegranskat)abstract
    • The response of 70 cutaneous, low-threshold mechanoreceptors in the human median, radial and inferior alveolar nerves to well controlled brush stimuli moving across the receptive field was quantitatively studied. Microneurography was used to obtain the response of each to multiple velocities from 0.5 to 32 cm/sec in at least two opposing directions. A high degree of response consistency was observed from the slowly adapting receptors to replication of the same stimulus and to a lesser, but significant degree from the fast adapting receptors. The evoked discharge reflected up to three partially overlapping phases of the moving stimulus: skin compression, indentation, and stretch. Although the overall discharge rate increased with both stimulus velocity and force, the spatial discharge pattern was preserved to a high degrees. In contrast, the discharge patterns differed for opposing and orthogonal directions. Reducing the area of skin surrounding the receptive field that was contacted by the moving stimuli had little effect on the evoked response. Individual mechanoreceptors display highly reliable differences to brush stimuli moving at different velocities. to brush stimuli moving at different velocities. Moreover, different directions of movement evoke differences in the discharge that are consistently observed upon replication of the same stimuli. Despite the richness and consistency in the spatial discharge pattern displayed by individual receptors, it is argued that the details of the patterns are not likely used by the CNS to infer information about direction and velocity of movement across the skin. Rather, the intensity of discharge is proposed as a plausible information-bearing attribute of the stimulus-evoked response.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 54
Typ av publikation
tidskriftsartikel (54)
Typ av innehåll
refereegranskat (54)
Författare/redaktör
Johansson, Roland S (8)
Nyberg, Lars (6)
Rieckmann, Anna (6)
Bäckman, Lars (5)
Edin, Benoni B (4)
Bohm, Staffan (3)
visa fler...
Nyberg, Lars, 1966- (3)
Salami, Alireza (3)
Medini, Paolo (3)
Berghard, Anna (3)
Fischer, Håkan (3)
Karlsson, Sari (3)
Johansson, Jarkko (3)
Andersson, Micael (2)
Axelsson, Jan, 1966- (2)
Eriksson, Johan (2)
Nilsson, Lars-Göran (2)
Dahlqvist, Solbritt ... (2)
Alstermark, Bror (2)
Flanagan, J Randall (2)
Jiang, Juan (2)
Boraxbekk, Carl-Joha ... (2)
Revonsuo, Antti (2)
Fjell, Anders M. (2)
Walhovd, Kristine B. (2)
Birznieks, Ingvars (2)
Jenmalm, Per (2)
Oldenborg, Per-Arne (2)
Scheinin, Harry (2)
Scheinin, Mika (2)
Wolpert, Daniel M. (2)
Vahlberg, Tero (2)
Essick, G K (2)
Amlien, Inge K. (2)
Green, P G (2)
Isenberg, W M (2)
Miao, F J P (2)
Levine, J D (2)
Strausbaugh, H J (2)
Matozaki, Takashi (2)
Håglin, Sofia (2)
Okazawa, Hideki (2)
Ohnishi, Hiroshi (2)
Murata, Yoji (2)
Pruszynski, J. Andre ... (2)
Scheinin, Annalotta (2)
Långsjö, Jaakko (2)
Kaisti, Kaike (2)
Kallionpää, Roosa E. (2)
Kantonen, Oskari (2)
visa färre...
Lärosäte
Karolinska Institutet (11)
Stockholms universitet (8)
Göteborgs universitet (1)
Uppsala universitet (1)
Högskolan i Skövde (1)
Språk
Engelska (54)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (39)
Samhällsvetenskap (6)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy