SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1529 2401 ;pers:(Schouenborg Jens)"

Sökning: L773:1529 2401 > Schouenborg Jens

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Granmo, Marcus, et al. (författare)
  • Action-based body maps in the spinal cord emerge from a transitory floating organization.
  • 2008
  • Ingår i: The Journal of Neuroscience : the official journal of the Society for Neuroscience. - 1529-2401. ; 28:21, s. 5494-5503
  • Tidskriftsartikel (refereegranskat)abstract
    • During development primary afferents grow into and establish neuronal connections in the spinal cord, thereby forming the basis for how we perceive sensory information and control our movements. In the somatosensory system, myriads of primary afferents, conveying information from different body locations and sensory modalities, get organized in the dorsal horn of the spinal cord so that spinal multisensory circuits receive topographically ordered information. How this intricate pathfinding is brought about during development is, however, largely unknown. Here we show that a body representation closely related to motor patterns emerges from a transitory floating and plastic organization through profound activity-dependent rewiring, involving both sprouting and elimination of afferent connections, and provide evidence for cross-modality interactions in the alignment of the multisensory input. Thus, far from being inborn and stereotypic, the dorsal horn of the spinal cord now appears to be a highly adaptive brain-body interface.
  •  
2.
  • Holmberg, H, et al. (författare)
  • Developmental adaptation of rat nociceptive withdrawal reflexes after neonatal tendon transfer
  • 1997
  • Ingår i: JNeurosci. - 1529-2401. ; 17:6, s. 2071-2078
  • Tidskriftsartikel (refereegranskat)abstract
    • Nociceptive withdrawal reflexes (NWRs) were studied in adult rats in which the movement patterns produced by single muscles had been altered by neonatal tendon transfer. NWRs evoked by cutaneous noxious mechanical and thermal (CO2-laser) stimulation were recorded using electromyography in a decerebrate spinal preparation. The sensitivity distribution within the receptive fields of the NWRs of the extensor digitorum longus and the peronei muscles exhibited changes corresponding to the altered movement patterns. No detectable change of NWRs was found in normal muscles whose receptive fields overlapped that of the modified muscle. Furthermore, NWRs of muscles that regained an essentially normal function after neonatal tendon transfer did not differ from normal. It is proposed that a developmental experience-dependent mechanism, which takes into account the hindlimb movement pattern caused by contraction of single muscles, underlies the functionally adapted organization of adult NWRs.
  •  
3.
  • Levinsson, Anders, et al. (författare)
  • Developmental tuning in a spinal nociceptive system: effects of neonatal spinalization
  • 1999
  • Ingår i: JNeurosci. - 1529-2401. ; 19:23, s. 10397-10403
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies indicate a modular organization of the nociceptive withdrawal reflex system. Each module has a characteristic receptive field, closely matching the withdrawal movement caused by its effector muscle. In the rat, the strength of the sensory input to each module is tuned during the first postnatal weeks, i.e., erroneous spinal connections are depressed, and adequate connections are strengthened. To clarify if this tuning is dependent on supraspinal structures, the effect of a complete neonatal spinal cord transection on the postnatal tuning of withdrawal reflexes was studied. The nociceptive receptive fields of single hindlimb muscles and compound withdrawal reflexes were examined in decerebrate unanesthetized and awake rats, respectively. Noxious thermal CO2 laser stimulation was used to evoke reflex responses. Neonatal spinal cord transection resulted in a disrupted reflex organization in the adult rat, resembling that previously found in neonatal rats. The receptive fields of single hindlimb muscles exhibited abnormal distribution of sensitivity not matching the withdrawal action of the effector muscles. Likewise, the composite nocifensive movements, as documented in the awake rat, often resulted in erroneous movements toward the stimulus. It is concluded that withdrawal reflexes do not become functionally adapted in rats spinalized at birth. These findings suggest a critical role for supraspinal systems in the postnatal tuning of spinal nociceptive systems.
  •  
4.
  • Levinsson, Anders, et al. (författare)
  • Spinal sensorimotor transformation: Relation between cutaneous somatotopy and a reflex network
  • 2002
  • Ingår i: The Journal of Neuroscience. - 1529-2401. ; 22:18, s. 8170-8182
  • Tidskriftsartikel (refereegranskat)abstract
    • The projection of primary afferents onto spinal interneurons constitutes the first step in sensorimotor transformations performed by spinal reflex systems. Despite extensive studies on spinal somatotopy, uncertainties remain concerning the extent and significance of representational overlap and relation to spinal reflex circuits. To address these issues, the cutaneous projection from the hindpaw and its relation to the topography of lamina V neurons encoding withdrawal reflex strength ("reflex encoders") was studied in rats. Thin and coarse primary afferent terminations in laminas II and III-IV, respectively, were mapped by wheat germ agglutinin-horseradish peroxidase and choleragenoid tracing. The functional weights of these projections were characterized by mapping nociceptive and tactile field potentials and compared with the topography of reflex encoders. Both anatomical and physiological data indicate that thin and coarse skin afferent input is spatially congruent in the horizontal plane. The representation of the hindpaw in the spinal cord was found to be intricate, with a high degree of convergence between the projections from different skin sites. "Somatotopic disruptions" such as the representation of central pads medial to that of the digits were common. The weight distribution of the cutaneous convergence patterns in laminas III-IV was similar to that of lamina V reflex encoders. This suggests that the cutaneous convergence and features such as somatotopic disruptions have specific relations to the sensorimotor transformations performed by reflex interneurons in the deep dorsal horn. Hence, the spinal somatotopic map may be better understood in light of the topography of such reflex systems.
  •  
5.
  • Waldenström Ellervik, Alexandra, et al. (författare)
  • Developmental learning in a pain-related system: Evidence for a cross-modality mechanism
  • 2003
  • Ingår i: The Journal of Neuroscience. - 1529-2401. ; 23:20, s. 7719-7725
  • Tidskriftsartikel (refereegranskat)abstract
    • The nociceptive spinal reflex system performs highly precise sensorimotor transformations that require functionally specified synaptic strengths. The specification is gradually attained during early development and appears to be learning dependent. Here we determine the time course of this specification for heat-nociceptive tail withdrawal reflexes and analyze which types of primary afferents are important for the learning by applying various forms of noninvasive sensory deprivations. The percentage of erroneous heat-nociceptive tail withdrawal reflexes (i.e., movements directed toward the stimulation) decreased gradually from 64.1 +/- 2.5% ( mean +/- SEM) to <10% during postnatal days 10-21. This improvement was completely blocked by anesthetizing the tail during the adaptation period, confirming that an experience-dependent mechanism is involved in the specification of synaptic strengths. However, the results show that the adaptation occurs to a significant extent despite local analgesia and protection of the tail from noxious input, provided that tactile sensitivity is preserved. Therefore, it appears that a nociceptive input is not necessary for the adaptation, and that input from tactile receptors can be used to guide the nociceptive synaptic organization during development. Sensory deprivation in the adult rat failed to affect the heat-nociceptive withdrawal reflex system, indicating that the adaptation has a "critical period" during early development. These findings provide a key to the puzzle of how pain-related systems can be functionally adapted through experience despite the rare occurrence of noxious input during early life.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy