SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1532 1827 ;lar1:(cth)"

Search: L773:1532 1827 > Chalmers University of Technology

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abel, Frida, 1974, et al. (author)
  • Analyses of apoptotic regulators CASP9 and DFFA at 1P36.2, reveal rare allele variants in human neuroblastoma tumours.
  • 2002
  • In: British journal of cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 86:4, s. 596-604
  • Journal article (peer-reviewed)abstract
    • The genes encoding Caspase-9 and DFF45 have both recently been mapped to chromosome region 1p36.2, that is a region alleged to involve one or several tumour suppressor genes in neuroblastoma tumours. This study presents an update contig of the 'Smallest Region of Overlap of deletions' in Scandinavian neuroblastoma tumours and suggests that DFF45 is localized in the region. The genomic organization of the human DFF45 gene, deduced by in-silico comparisons of DNA sequences, is described for the first time in this paper. In the present study 44 primary tumours were screened for mutation by analysis of the genomic sequences of the genes. In two out of the 44 tumours this detected in the DFFA gene one rare allele variant that caused a non-polar to a polar amino acid exchange in a preserved hydrophobic patch of DFF45. One case was hemizygous due to deletion of the more common allele of this polymorphism. Out of 194 normal control alleles only one was found to carry this variant allele, so in respect of it, no healthy control individual out of 97 was homozygous. Moreover, our RT-PCR expression studies showed that DFF45 is preferably expressed in low-stage neuroblastoma tumours and to a lesser degree in high-stage neuroblastomas. We conclude that although coding mutations of Caspase-9 and DFF45 are infrequent in neuroblastoma tumours, our discovery of a rare allele in two neuroblastoma cases should be taken to warrant further studies of the role of DFF45 in neuroblastoma genetics.
  •  
2.
  • Abel, Frida, 1974, et al. (author)
  • Gain of chromosome arm 17q is associated with unfavourable prognosis in neuroblastoma, but does not involve mutations in the somatostatin receptor 2(SSTR2) gene at 17q24.
  • 1999
  • In: British journal of cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 81:8, s. 1402-9
  • Journal article (peer-reviewed)abstract
    • Deletion of chromosome arm 1p and amplification of the MYCN oncogene are well-recognized genetic alterations in neuroblastoma cells. Recently, another alteration has been reported; gain of the distal part of chromosome arm 17q. In this study 48 neuroblastoma tumours were successfully analysed for 17q status in relation to known genetic alterations. Chromosome 17 status was detected by fluorescence in situ hybridization (FISH). Thirty-one of the 48 neuroblastomas (65%) showed 17q gain, and this was significantly associated with poor prognosis. As previously reported, 17q gain was significantly associated with metastatic stage 4 neuroblastoma and more frequently detected than both deletion of chromosome arm 1p and MYCN amplification in tumours of all stages. 17q gain also showed a strong correlation to survival probability (P = 0.0009). However, the most significant correlation between 17q gain and survival probability was observed in children with low-stage tumours (stage 1, 2, 3 and 4S), with a survival probability of 100% at 5 years from diagnosis for children with tumours showing no 17q gain compared to 52.5% for those showing 17q gain (P = 0.0021). This suggests that 17q gain as a prognostic factor plays a more crucial role in low-stage tumours. Expression of the somatostatin receptor 2 (SSTR2), localized in chromosome region 17q24, has in previous studies been shown to be positively related to survival in neuroblastoma. A point mutation in the SSTR2 gene has earlier been reported in a human small-cell lung cancer. In this study, mutation screening of the SSTR2 gene in 43 neuroblastoma tumours was carried out with polymerase chain reaction-based single-stranded conformation polymorphism/heteroduplex (SSCP/HD) and DNA sequencing, and none of the tumours showed any aberrations in the SSTR2 gene. These data suggest that mutations in the SSTR2 gene are uncommon in neuroblastoma tumours and do not correlate with either the 17q gain often seen or the reason some tumours do not express SSTR2 receptors. Overall, this study indicates that gain of chromosome arm 17q is the most frequently occurring genetic alteration, and that it is associated with established prognostic factors.
  •  
3.
  • Astuti, D, et al. (author)
  • Investigation of the role of SDHB inactivation in sporadic phaeochromocytoma and neuroblastoma.
  • 2004
  • In: British journal of cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 91:10, s. 1835-41
  • Journal article (peer-reviewed)abstract
    • Germline mutations in the succinate dehydrogenase (SDH) (mitochondrial respiratory chain complex II) subunit B gene, SDHB, cause susceptibility to head and neck paraganglioma and phaeochromocytoma. Previously, we did not identify somatic SDHB mutations in sporadic phaeochromocytoma, but SDHB maps to 1p36, a region of frequent loss of heterozygosity (LOH) in neuroblastoma as well. Hence, to evaluate SDHB as a candidate neuroblastoma tumour suppressor gene (TSG) we performed mutation analysis in 46 primary neuroblastomas by direct sequencing, but did not identify germline or somatic SDHB mutations. As TSGs such as RASSF1A are frequently inactivated by promoter region hypermethylation, we designed a methylation-sensitive PCR-based assay to detect SDHB promoter region methylation. In 21% of primary neuroblastomas and 32% of phaeochromocytomas (32%) methylated (and unmethylated) alleles were detected. Although promoter region methylation was also detected in two neuroblastoma cell lines, this was not associated with silencing of SDHB expression, and treatment with a demethylating agent (5-azacytidine) did not increase SDH activity. These findings suggest that although germline SDHB mutations are an important cause of phaeochromocytoma susceptibility, somatic inactivation of SDHB does not have a major role in sporadic neural crest tumours and SDHB is not the target of 1p36 allele loss in neuroblastoma and phaeochromocytoma.
  •  
4.
  • Krona, Cecilia, 1976, et al. (author)
  • A novel 1p36.2 located gene, APITD1, with tumour-suppressive properties and a putative p53-binding domain, shows low expression in neuroblastoma tumours.
  • 2004
  • In: British journal of cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 91:6, s. 1119-30
  • Journal article (peer-reviewed)abstract
    • Neuroblastoma is characterised by a lack of TP53 mutations and no other tumour suppressor gene consistently inactivated has yet been identified in this childhood cancer form. Characterisation of a new gene, denoted APITD1, in the neuroblastoma tumour suppressor candidate region in chromosome 1p36.22 reveals that APITD1 contains a predicted TFIID-31 domain, representing the TATA box-binding protein-associated factor, TAF(II)31, which is required for p53-mediated transcription activation. Two different transcripts of this gene were shown to be ubiquitously expressed, one of them with an elevated expression in foetal tissues. Primary neuroblastoma tumours of all different stages showed either very weak or no measurable APITD1 expression, contrary to the level of expression observed in neuroblastoma cell lines. A reduced pattern of expression was also observed in a set of various tumour types. APITD1 was functionally tested by adding APITD1 mRNA to neuroblastoma cells, leading to the cell growth to be reduced up to 90% compared to control cells, suggesting APITD1 to have a role in a cell death pathway. Furthermore, we determined the genomic organisation of APITD1. Automated genomic DNA sequencing of the coding region of the gene as well as the promoter sequence in 44 neuroblastoma tumours did not reveal any loss-of-function mutations, indicating that mutations in APITD1 is not a common abnormality of neuroblastoma tumours. We suggest that low expression of this gene might interfere with the ability for apoptosis through the p53 pathway.
  •  
5.
  • Simonsson, Tomas, 1965, et al. (author)
  • Reducing uncertainty in health-care resource allocation
  • 2007
  • In: British journal of cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 96:12, s. 1834-8
  • Journal article (peer-reviewed)abstract
    • A key task for health policymakers is to optimise the outcome of health care interventions. The pricing of a new generation of cancer drugs, in combination with limited health care resources, has highlighted the need for improved methodology to estimate outcomes of different treatment options. Here we introduce new general methodology, which for the first time employs continuous hazard functions for analysis of survival data. Access to continuous hazard functions allows more precise estimations of survival outcomes for different treatment options. We illustrate the methodology by calculating outcomes for adjuvant treatment of gastrointestinal stromal tumours with imatinib mesylate, which selectively inhibits the activity of a cancer-causing enzyme and is a hallmark representative for the new generation of cancer drugs. The calculations reveal that optimal drug pricing can generate all win situations that improve drug availability to patients, make the most of public expenditure on drugs and increase pharmaceutical company gross profits. The use of continuous hazard functions for analysis of survival data may reduce uncertainty in health care resource allocation, and the methodology can be used for drug price negotiations and to investigate health care intervention thresholds. Health policy makers, pharmaceutical industry, reimbursement authorities and insurance companies, as well as clinicians and patient organisations, should find the methodology useful.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view