SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1549 3296 OR L773:1552 4965 ;mspu:(article);pers:(Kumar Ashok)"

Search: L773:1549 3296 OR L773:1552 4965 > Journal article > Kumar Ashok

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ivanov, Alexander, et al. (author)
  • Boronate-containing polymer brushes: Characterization, interaction with saccharides and mammalian cancer cells.
  • 2009
  • In: Journal of Biomedical Materials Research. Part A. - : Wiley. - 1552-4965 .- 1549-3296. ; 88:1, s. 213-225
  • Journal article (peer-reviewed)abstract
    • Boronate-containing polymer brushes were synthesized by free radical copolymerization of N,N-dimethylacrylamide (DMAA) and N-acryloyl-m-phenylboronic acid (NAAPBA) (9:1) on the surface of 3-mercaptopropyl-silylated glass plates and capillaries. The brushes were characterized with time-of-flight secondary ion mass-spectrometry (ToF SIMS), atomic force microscopy and contact angle measurements. Fructose caused a well-expressed drop spreading on the surface of copolymer-grafted glass, due to the strong interaction with the boronate groups. Sedimentation of murine hybridoma cells M2139 or human myeloid leukemia cells KG1 onto the DMAA-NAAPBA copolymer-grafted glass plates from 10 mM phosphate buffer solution (pH 8.0) resulted in the cell adhesion. The adhered M2139 and KG1 cells could be quantitatively detached from the grafted plates with 0.1M fructose, which competed with cell surface carbohydrates for binding to the boronates. Evaluation of the binding strength between M2139 cells and the copolymer brush was performed by exposure of the adhered cells to a shear stress. Detachment of a fraction of 18% of the adhered M2139 cells was obtained at a shear force of 1400-2800 pN/cell generated by the running phosphate buffer (pH 8.0), whereas the remaining adhered cells (70%) could be detached with 0.1M fructose dissolved in the same buffer. Possible applications of the boronate-containing polymer brushes to affinity cell separation can be based upon the facile recovery of the attached cells. (c) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 2008.
  •  
2.
  • Shakya, Akhilesh Kumar, et al. (author)
  • Polymeric cryogels are biocompatible, and their biodegradation is independent of oxidative radicals
  • 2014
  • In: Journal of Biomedical Materials Research. Part A. - Hoboken, NJ : John Wiley & Sons. - 1549-3296 .- 1552-4965. ; 102:10, s. 3409-3418
  • Journal article (peer-reviewed)abstract
    • Biocompatibility and in vivo degradation are two important characteristics of cell scaffolds. We evaluated these properties for four different polymeric macroporous cryogels, polyvinylcaprolactam, polyvinyl alcohol-alginate-bioactive glass composite, polyhydroxyethylmethacrylate-gelatin (pHEMA-gelatin), and chitosan-agarose-gelatin in mice. All the cryogels were synthesized at subzero temperature and were implanted subcutaneously in C57Bl/10.Q inbred mice. Both local and systemic toxicities were negligible as determined by serum tumor necrosis factor α analysis and histology of surrounding tissues nearby the implants. Complete integration of cryogels into the surrounding tissues with neovascular formation was evident in all the mice. At the implantation site, massive infiltration of macrophages and few dendritic cells were observed but neutrophils and mast cells were clearly absent. Macrophage infiltrations were observed even inside the pores of cryogel implants. To ascertain whether oxidative radicals are involved in the cryogel degradation, we implanted these gels in mice deficient for reactive oxygen species (ROS) production. Rapid gel degradation was observed in the absence of ROS, and there was no significant difference in the biodegradation of these cryogels between ROS sufficient and deficient mice thereby excluding any major role for ROS in this process. Thus, we demonstrate the biocompatibility and ROS-independent biodegradable properties of cryogels that could be useful for tissue-specific tissue engineering applications. © 2013 Wiley Periodicals, Inc. 
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view