SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1549 3296 OR L773:1552 4965 ;pers:(Engqvist Håkan)"

Sökning: L773:1549 3296 OR L773:1552 4965 > Engqvist Håkan

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hulsart-Billström, Gry, et al. (författare)
  • Osteogenic potential of Sr-doped calcium phosphate hollow spheres in vitro and in vivo
  • 2013
  • Ingår i: Journal of Biomedical Materials Research. Part A. - : Wiley. - 1549-3296 .- 1552-4965. ; 101:8, s. 2322-2331
  • Tidskriftsartikel (refereegranskat)abstract
    • Treatment of osteoporotic fractures with conventional surgical methods is associated with a high rate of complications. Intense search for new treatment options includes development of specific biomaterials aimed to be part of the surgical armamentarium. Strontium doped calcium phosphate spheres (SrCPS) is a new material that might be of interest due to the influence on osteoclast and osteoblast activity. In the present study, we successfully constructed hollow spherical SrCPS particles with a diameter of ∼700 nm and shell thickness of ∼150 nm. The Sr content was about 20 wt %. Cell viability and cytotoxicity were investigated in vitro with concentrations from 0 to 1000 μg/mL of SrCPS in medium extract in a day chase study. The in vivo biocompatibility was tested in a delayed bone-healing model in a rat vertebral defect by histology, μCT, and nanoSPECT. The SrCPS showed no toxicity in vitro with comparable cell number in all concentrations. Increased metabolism was seen in the cell viability study in cells exposed to 400 and 600 μg/mL. SPECT showed good biocompatibility with no local adverse effects and an increased osteoblast activity as compared to adjacent vertebra. SrCPS implantation induced bone formation and resulted in complete resorption and defect consolidation.
  •  
2.
  • Montazerolghaem, Maryam, 1985-, et al. (författare)
  • Sustained release of simvastatin from premixed injectable calcium phosphate cement
  • 2014
  • Ingår i: Journal of Biomedical Materials Research. Part A. - : Wiley. - 1549-3296 .- 1552-4965. ; 102:2, s. 340-347
  • Tidskriftsartikel (refereegranskat)abstract
    • Locally applied simvastatin is known to promote bone regeneration; however, the lack of suitable delivery systems has restricted its clinical use. In this study we demonstrate for the first time the use ofpremixed acidic calcium phosphate cement (CPC) as a delivery system for water-solubilizedsimvastatin. Freeze-dried simvastatin -hydroxy acid (SVA) was added to the premixed cement paste in four different doses (1, 0.5, 0.25, and 0 mg SVA/g cement). The addition of the drug did not alter thecement setting time (38 min), compression strength (5.54 MPa), or diametral tensile strength (2.62 MPa). In a release study conducted in phosphate buffered saline at 37 degrees C, a diffusion-controlledrelease was observed for over a week. Furthermore, the osteogenic effect of the released SVA was demonstrated in vitro. Cell proliferation, alkaline phosphatase activity, and mineralization were assayed after incubation with cement extracts. The lower doses of SVA (0.5 and 0.25 mg SVA/g cement) showed an approximately fourfold increase in mineralization as compared to the control. In conclusion, our findings suggest that premixed acidic CPC is a good option for local delivery of SVA, due to its ability of slowly releasing the drug, leading to a prolonged stimulation of osteogenesis.
  •  
3.
  • Palmquist, Anders, 1977, et al. (författare)
  • Biomechanical, Histological and Ultrastructural Analyses of Laser Micro- and Nano-structured Titanium Alloy Implants : A Study in Rabbit
  • 2010
  • Ingår i: Journal of Biomedical Materials Research - Part A. - : Wiley. - 1549-3296 .- 1552-4965. ; 92A:4, s. 1476-1486
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to evaluate the biomechanical properties and ultrastructure of the bone response of partly laser-modified Ti6Al4V implants compared with turned, machined implants after 8 weeks in rabbit. The surface analyses performed with interference microscopy and electron microscopy showed increased surface topography with micro- and nano-sized surface features as well as increased oxide thickness of the modified surface. The biomechanical testing demonstrated a 270% increase in torque value for the surface modified implants compared with the control implants. Histological evaluation of ground sections of specimens subjected to biomechanical testing revealed ongoing bone formation and remodeling. A histological feature exclusively observed at the laser-modified surface was the presence of fracture in the mineralized bone rather than at the interface between the bone and implant. Transmission electron microscopy (TEM) was performed on Focused Ion Beam (FIB) prepared samples of the intact bone-implant interface, demonstrating a direct contact between nanocrystalline hydroxyapatite and the oxide of the laser-modified implant surface. In conclusion, laser-modified titanium alloy implants have significantly stronger bone anchorage compared with machined implants and show no adverse tissue reactions.
  •  
4.
  • Åberg, Jonas, 1982-, et al. (författare)
  • Biocompatibility and resorption of a radiopaque premixed calcium phosphate cement
  • 2012
  • Ingår i: Journal of Biomedical Materials Research. Part A. - : Wiley. - 1549-3296 .- 1552-4965. ; 100A:5, s. 1269-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • Calcium phosphate cements (CPC) are used as bone void filler in various orthopedic indications; however, there are some major drawbacks regarding mixing, transfer, and injection of traditional CPC. By using glycerol as mixing liquid, a premixed calcium phosphate cement (pCPC), some of these difficulties can be overcome. In the treatment of vertebral fractures the handling characteristics need to be excellent including a high radio-opacity for optimal control during injection. The aim of this study is to evaluate a radiopaque pCPC regarding its resorption behavior and biocompatibility in vivo. pCPC and a water-based CPC were injected into a circle divide 4-mm drilled femur defect in rabbits. The rabbits were sacrificed after 2 and 12 weeks. Cross sections of the defects were evaluated using histology, electron microscopy, and immunohistochemical analysis. Signs of inflammation were evaluated both locally and systemically. The results showed a higher bone formation in the pCPC compared to the water-based CPC after 2 weeks by expression of RUNX-2. After 12 weeks most of the cement had been resorbed in both groups. Both materials were considered to have a high biocompatibility since no marked immunological response was induced and extensive bone ingrowth was observed. The conclusion from the study was that pCPC with ZrO2 radiopacifier is a promising alternative regarding bone replacement material and may be suggested for treatment of, for example, vertebral fractures based on its high biocompatibility, fast bone ingrowth, and good handling properties.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy