SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1549 3296 OR L773:1552 4965 ;pers:(Franke Stenport Victoria 1970)"

Sökning: L773:1549 3296 OR L773:1552 4965 > Franke Stenport Victoria 1970

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barkarmo, Sargon, et al. (författare)
  • Nano-hydroxyapatite-coated PEEK implants : a pilot study in rabbit bone
  • 2013
  • Ingår i: Journal of Biomedical Materials Research. Part A. - : John Wiley & Sons. - 1549-3296 .- 1552-4965. ; 101A:2, s. 465-471
  • Tidskriftsartikel (refereegranskat)abstract
    • Osseointegration of surface-modified polyetheretherketone (PEEK) implants was studied in vivo. A total of 18 cylinder-shaped PEEK implants were inserted in the femurs of nine New Zealand rabbits; half were coated with nanocrystalline hydroxyapatite (nanoHA) and half were uncoated controls. Healing time was 6 weeks. Samples were retrieved with the implant and surrounding tissue, processed to cut and ground sections, and analyzed histomorphometrically. The implant surfaces were analyzed with optical interferometry, scanning electron microscopy (SEM), atomic force microscopy, and X-ray photoelectron spectroscopy (XPS). NanoHA-coated PEEK surfaces had lower height deviation (Sa) than controls [mean ± SD: 0.41 μm (± 0.14) vs. 0.96 μm (± 0.28)]. SEM images showed the nanoHA crystals as a thin layer on the polymer surface. XPS analysis of the coated implants showed a Ca/P ratio of 1.67. Histomorphometry indicated that the nanoHA-coated implants had more bone-to-implant contact [16% (± 4.7) vs. 13% (± 9.3)] and more bone area [52% (± 9.5) vs. 45% (± 11.9)]. We found no difference between smooth nanoHA-coated cylinder-shaped PEEK implants and uncoated controls. However, higher mean bone-to-implant contact indicated better osseointegration in the coated implants than in the uncoated controls. The large number of lost implants was interpreted as a lack of primary stability due to implant design.
  •  
2.
  • Göransson, Anna, 1970, et al. (författare)
  • An in vitro comparison of possibly bioactive titanium implant surfaces.
  • 2009
  • Ingår i: Journal of Biomedical Materials Research Part A. - : Wiley. - 1552-4965 .- 1549-3296. ; 88:4, s. 1037-1047
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the study was to compare Ca and P formation (CaP) and subsequent bone cell response of a blasted and four different possibly bioactive commercially pure (cp) titanium surfaces; 1. Fluoride etched (Fluoride), 2. Alkali-heat treated (AH), 3. Magnesium ion incorporated anodized (TiMgO), and 4. Nano HA coated and heat treated (nano HA) in vitro. Furthermore, to evaluate the significance of the SBF formed CaP coat on bone cell response. The surfaces were characterized by Optical Interferometry, Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). CaP formation was evaluated after 12, 24 and 72 h in simulated body fluid (SBF). Primary human mandibular osteoblast-like cells were cultured on the various surfaces subjected to SBF for 72 h. Cellular attachment, differentiation (osteocalcin) and protein production (TGF-beta(1)) was evaluated after 3 h and 10 days respectively. Despite different morphological appearances, the roughness of the differently modified surfaces was similar. The possibly bioactive surfaces gave rise to an earlier CaP formation than the blasted surface, however, after 72 h the blasted surface demonstrated increased CaP formation compared to the possibly bioactive surfaces. Subsequent bone cell attachment was correlated to neither surface roughness nor the amount of formed CaP after SBF treatment. In contrast, osteocalcin and TGF-beta(1) production were largely correlated to the amount of CaP formed on the surfaces. However, bone response (cell attachment, osteocalcin and TGF-F production) on the blasted controls were similar or increased compared to the SBF treated fluoridated, AH and TiMgO surface. (c) 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.
  •  
3.
  • Meirelles, Luiz, 1974, et al. (författare)
  • Bone reaction to nano hydroxyapatite modified titanium implants placed in a gap-healing model
  • 2008
  • Ingår i: Journal Biomedical MAterials Research - A. - : Wiley. - 1549-3296 .- 1552-4965. ; 87:3, s. 624-631
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanohydroxyapatite materials show similar chemistry to the bone apatite and depending on the underlying topography and the method of preparation, the nanohydroxyapatite may simulate the specific arrangement of the crystals in bone. Hydroxyapatite (HA) and other CaP materials have been indicated in cases in which the optimal surgical fit is not achievable during surgery, and the HA surface properties may enhance bone filling of the defect area. In this study, very smooth electropolished titanium implants were used as substrata for nano-HA surface modification and as control. One of each implant (control and nano HA) was placed in the rabbit tibia in a surgical site 0.7 mm wider than the implant diameter, resulting in a gap of 0.35 mm on each implant side. Implant stability was ensured by a fixating plate fastened with two side screws. Topographical evaluation performed with an optical interferometer revealed the absence of microstructures on both implants and higher resolution evaluation with AFM showed similar nanoroughness parameters. Surface pores detected on the AFM measurements had similar diameter, depth, and surface porosity (%). Histological evaluation demonstrated similar bone formation for the nano HA and electropolished implants after 4 weeks of healing. These results do not support that nano-HA chemistry and nanotopography will enhance bone formation when placed in a gap-healing model. The very smooth surface may have prevented optimal activity of the material and future studies may evaluate the synergic effects of the surface chemistry, micro, and nanotopography, establishing the optimal parameters for each of them.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy