SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1549 3296 OR L773:1552 4965 ;pers:(Nilsson Bo)"

Sökning: L773:1549 3296 OR L773:1552 4965 > Nilsson Bo

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferraz, Natalia, et al. (författare)
  • Nanoporesize affects complement activation
  • 2008
  • Ingår i: Journal of biomedical materials research. Part A. - : Wiley. - 1552-4965 .- 1549-3296. ; 87:3, s. 575-81
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study, we have shown the vast importance of biomaterial nanotexture when evaluating inflammatory response. For the first time in an in vitro whole blood system, we have proven that a small increase in nanoporesize, specifically 180 nm (from 20 to 200 nm), has a huge effect on the complement system. The study was done using nanoporous aluminiumoxide, a material that previously has been evaluated for potential implant use, showing good biocompatibility. This material can easily be manufactured with different pore sizes making it an excellent candidate to govern specific protein and cellular events at the tissue-material interface. We performed whole blood studies, looking at complement activation after blood contact with two pore size alumina membranes (pore diameters, 20 and 200 nm). The fluid phase was analyzed for complement soluble components, C3a and sC5b-9. In addition, surface adsorbed proteins were eluted and dot blots were performed to detect IgG, IgM, C1q, and C3. All results point to the fact that 200 nm pore size membranes are more complement activating. Significantly, higher values of complement soluble components were found after whole blood contact with 200 nm alumina and all studied proteins adsorbed more readily to this membrane than to the 20 nm pore size membrane. We hypothesize that the difference in complement activation between our two test materials is caused by the type and the amount of adsorbed proteins, as well as their conformation and orientation. The different protein patterns created on the two alumina membranes are most likely a consequence of the material topography.
  •  
2.
  • Noiri, Makoto, et al. (författare)
  • Modification of human MSC surface with oligopeptide-PEG-lipids for selective binding to activated endothelium
  • 2019
  • Ingår i: Journal of Biomedical Materials Research. Part A. - : John Wiley & Sons. - 1549-3296 .- 1552-4965. ; 107:8, s. 1779-1792
  • Tidskriftsartikel (refereegranskat)abstract
    • Promising cell therapies using mesenchymal stem cells (MSCs) is proposed for stroke patients. Therefore, we aimed to efficiently accumulate human MSC (hMSC) to damaged brain area to improve the therapeutic effect using poly(ethylene glycol) (PEG)-conjugated phospholipid (PEG-lipid) carrying an oligopeptide as a ligand, specific for E-selectin which is upregulated on activated endothelial cells under hypoxia-like stroke. Here we synthesized E-selectin-binding oligopeptide (ES-bp) conjugated with PEG spacer having different molecular weights from 1 to 40 kDa. We found that ES-bp can be immobilized onto the hMSC surface through PEG-lipid without influence on cell growth and differentiation into adipocytes and osteocytes, respectively. It is also possible to control the immobilization of ES-bp on hMSC surface (<10(8) ES-bp per cell). Immobilized ES-bp can be continuously immobilized at the outside of cell membrane when PEG-lipids with PEG 5 and 40 kDa were used. In addition, the modified hMSC can specifically attach onto E-selectin-immobilized surface as a model surface of activated endothelium in human blood, indicating the sufficient number of immobilized ES-bp onto hMSC. Thus, this technique is one of the candidates for hMSC accumulation to cerebral infarction area. (c) 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1779-1792, 2019.
  •  
3.
  •  
4.
  • Engberg, Anna E., et al. (författare)
  • Blood protein-polymer adsorption : Implications for understanding complement-mediated hemoincompatibility
  • 2011
  • Ingår i: Journal of Biomedical Materials Research - Part A. - : Wiley. - 1549-3296. ; 97A:1, s. 74-84
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to create polymeric materials with known properties to study the preconditions for complement activation. Initially, 22 polymers were screened for complement activating capacity. Based on these results, six polymers (P1-P6) were characterized regarding physico-chemical parameters, for example, composition, surface area, pore size, and protein adsorption from human EDTA-plasma. P2, P4, and reference particles of polystyrene and polyvinyl chloride, were hydrophobic, bound low levels of protein and were poor complement activators. Their accessible surface was limited to protein adsorption in that they had pore diameters smaller than most plasma proteins. P1 and P3 were negatively charged and adsorbed IgG and C1q. A 10-fold difference in complement activation was attributed to the fact that P3 but not P1 bound high amounts of C1-inhibitor. The hydrophobic P5 and P6 were low complement activators. They selectively bound apolipoproteins AI and AIV (and vitronectin), which probably limited the binding of complement activators to the surface. We demonstrate the usefulness of the modus operandi to use a high-throughput procedure to synthesize a great number of novel substances, assay their physico-chemical properties with the aim to study the relationship between the initial protein coat on a surface and subsequent biological events. Data obtained from the six polymers characterized here, suggest that a complement-resistant surface should be hydrophobic, uncharged, and have a small available surface, accomplished by nanostructured topography. Additional attenuation of complement can be achieved by selective enrichment of inert proteins and inhibitors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy