SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1549 3296 OR L773:1552 4965 ;pers:(Terenghi Giorgio)"

Sökning: L773:1549 3296 OR L773:1552 4965 > Terenghi Giorgio

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Novikova, Liudmila N, et al. (författare)
  • Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation.
  • 2006
  • Ingår i: Journal of Biomedical Materials Research part A. - : Wiley. - 1549-3296 .- 1552-4965. ; 77:2, s. 242-252
  • Tidskriftsartikel (refereegranskat)abstract
    • Development of biosynthetic conduits carrying extracellular matrix molecules and cell lines expressing neurotrophic growth factors represents a novel and promising strategy for spinal cord and peripheral nerve repair. In the present in vitro study, the compatibility and growth-promoting effects of (i) alginate hydrogel, (ii) alginate hydrogel complemented with fibronectin, and (iii) matrigel were compared between olfactory ensheathing cells (OECs), Schwann cells (SCs), and bone marrow stromal cells (BMSCs). Neurite outgrowth from embryonic dorsal root ganglia (DRG) neurons was used to assess the efficacy of the hydrogels alone or in combination with cultured cells to promote axonal regeneration. The result showed that alginate hydrogel transformed OECs, SCs, and BMSCs into atypical cells with spherical shape and inhibited their metabolic activity. Combination of alginate hydrogel with fibronectin promoted only OECs proliferation. Alginate hydrogel also inhibited outgrowth of DRG neurites, although this effect was attenuated by addition of fibronectin, SCs, or BMSCs. In contrast, matrigel stimulated cell proliferation, preserved the typical morphological features of the cultured cells and induced massive sprouting of DRG neurites. Addition of cultured cells to matrigel did not further improve DRG neurite outgrowth. The present findings suggest that addition of extracellular matrix should be considered when engineering biosynthetic scaffolds on the basis of alginate hydrogels.
  •  
2.
  • Sun, M, et al. (författare)
  • In vitro and in vivo testing of novel ultrathin PCL and PCL/PLA blend films as peripheral nerve conduit
  • 2010
  • Ingår i: Journal of Biomedical Materials Research. Part A. - : Wiley. - 1549-3296 .- 1552-4965. ; 93:4, s. 1470-1481
  • Tidskriftsartikel (refereegranskat)abstract
    • In an attempt to obviate the drawbacks of nerve autograft, ultrathin microporous biodegradable PCL and PCL/PLA films were tested for their compatibility with motor neuron-like NG108-15 cells and primary Schwann cells. Data obtained from MTS colorimetric and DNA fluorimetric assays showed that both cell lines readily attached and proliferated on these materials. Images taken using scanning electron microscope and fluorescence microscope confirmed these observations. Enhanced cell-surface interaction was achieved by pretreating the films in NaOH solution. Importantly, NG108-15 cells could be induced into differentiated phenotype with long, un-branched neurites growing across the surface of the materials. The bipolar spindle-shaped phenotype of Schwann cells was also retained on these scaffolds. Positive immunochemical staining using antibodies against neurofilament for NG108-15 cells and S100 for Schwann cells indicated the expression of these marker proteins. In a small-scaled pilot testing, the performance of PCL conduits in bridging up a 10 mm gap in rat sciatic nerve model was assessed. Immunohistochemical staining showed that regenerated nerve tissue and penetrated Schwann cells have the potential to span the whole length of the conduit in 2 weeks.
  •  
3.
  • Tse, Kai-Hei, et al. (författare)
  • In vitro evaluation of polyester-based scaffolds seeded with adipose derived stem cells for peripheral nerve regeneration
  • 2010
  • Ingår i: Journal of Biomedical Materials Research. Part A. - : Wiley. - 1549-3296 .- 1552-4965. ; 95:3, s. 701-708
  • Tidskriftsartikel (refereegranskat)abstract
    • To overcome the disadvantages of autografts for peripheral nerve repair, different methods such as artificial nerve conduits have been investigated for an alternative approach. This study demonstrated that solvent casting is a simple but efficient method to create thin polyester-based scaffolds for stem cell delivery. Using poly (ε-caprolactone) and poly (D,L-lactic acid), we produced scaffold films containing heterogenous depressions (pits) on the air surface with a size ranging from 0.5 to 30 μm(2). These scaffolds were moderately hydrophobic; however, they supported the differentiation of adipose derived stem cells (ADSC) into a Schwann cell-like phenotype. The differentiated ADSC (dADSC) expressed S100 protein and glial fibrillary acidic protein and readily adhered to the films and proliferated at a similar rate to those cultured on tissue culture polystyrene. Cells were also positive for proliferating cell nuclear antigen. Furthermore, dADSC retained functional activity and significantly enhanced neurite outgrowth from dorsal root ganglia neurons. This study suggests polymer scaffolds combined with dADSCs could be a promising therapy for peripheral nerve injuries.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy