Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1553 7366 OR L773:1553 7374 "

Sökning: L773:1553 7366 OR L773:1553 7374

Sortera/gruppera träfflistan
  • Alam, Athar, et al. (författare)
  • Dissociation between the critical role of ClpB of Francisella tularensis for the heat shock response and the DnaK interaction and its important role for efficient type VI secretion and bacterial virulence
  • 2020
  • Ingår i: PLoS Pathogens. - : Public Library of Science. - 1553-7366 .- 1553-7374. ; 16:4, s. 1-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Author summary Type VI secretion systems (T6SSs) are essential virulence determinants of many Gram-negative pathogens, including Francisella tularensis. This highly virulent bacterium encodes an atypical T6SS lacking ClpV, the ATPase crucial for prototypic T6SS sheath disassembly. It, however, possesses ClpB, a protein critical for heat shock survival via its interaction with DnaK. Since ClpB possesses ATPase activity, it has been hypothesized to provide a compensatory function for the absence of ClpV, a hypothesis supported by the recent findings from us and others. Here, we investigated how F. tularensis ClpB controls T6S. In silico modelling of the ClpB-DnaK complex identified key interactions that were experimentally verified. For example, mutating one of the DnaK-interacting residues rendered the bacterium exquisitely susceptible to heat shock, but had no effect on T6S and virulence. In contrast, removing the N-terminal of ClpB only had a slight effect on the heat shock response, but strongly compromised both T6S and virulence. Intriguingly, the Escherichia coli ClpB could fully complement the function of F. tularensis ClpB. The data demonstrate that the two critical roles of ClpB, mediating heat shock survival and effective T6S, are dissociated and that the N-terminal is crucial for T6S and virulence. Francisella tularensis, a highly infectious, intracellular bacterium possesses an atypical type VI secretion system (T6SS), which is essential for its virulence. The chaperone ClpB, a member of the Hsp100/Clp family, is involved in Francisella T6SS disassembly and type VI secretion (T6S) is impaired in its absence. We asked if the role of ClpB for T6S was related to its prototypical role for the disaggregation activity. The latter is dependent on its interaction with the DnaK/Hsp70 chaperone system. Key residues of the ClpB-DnaK interaction were identified by molecular dynamic simulation and verified by targeted mutagenesis. Using such targeted mutants, it was found that the F. novicida ClpB-DnaK interaction was dispensable for T6S, intracellular replication, and virulence in a mouse model, although essential for handling of heat shock. Moreover, by mutagenesis of key amino acids of the Walker A, Walker B, and Arginine finger motifs of each of the two Nucleotide-Binding Domains, their critical roles for heat shock, T6S, intracellular replication, and virulence were identified. In contrast, the N-terminus was dispensable for heat shock, but required for T6S, intracellular replication, and virulence. Complementation of the Delta clpB mutant with a chimeric F. novicida ClpB expressing the N-terminal of Escherichia coli, led to reconstitution of the wild-type phenotype. Collectively, the data demonstrate that the ClpB-DnaK interaction does not contribute to T6S, whereas the N-terminal and NBD domains displayed critical roles for T6S and virulence.
  • Anderl, Ines, et al. (författare)
  • Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection
  • 2016
  • Ingår i: PLoS Pathogens. - : Public library science. - 1553-7366 .- 1553-7374. ; 12:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular immune responses require the generation and recruitment of diverse blood cell types that recognize and kill pathogens. In Drosophila melanogaster larvae, immune-inducible lamellocytes participate in recognizing and killing parasitoid wasp eggs. However, the sequence of events required for lamellocyte generation remains controversial. To study the cellular immune system, we developed a flow cytometry approach using in vivo reporters for lamellocytes as well as for plasmatocytes, the main hemocyte type in healthy larvae. We found that two different blood cell lineages, the plasmatocyte and lamellocyte lineages, contribute to the generation of lamellocytes in a demand-adapted hematopoietic process. Plasmatocytes transdifferentiate into lamellocyte-like cells in situ directly on the wasp egg. In parallel, a novel population of infection-induced cells, which we named lamelloblasts, appears in the circulation. Lamelloblasts proliferate vigorously and develop into the major class of circulating lamellocytes. Our data indicate that lamellocyte differentiation upon wasp parasitism is a plastic and dynamic process. Flow cytometry with in vivo hemocyte reporters can be used to study this phenomenon in detail.
  • Aspholm, Marina, et al. (författare)
  • SabA is the H. pylori hemagglutinin and is polymorphic in binding to sialylated glycans.
  • 2006
  • Ingår i: PLoS pathogens. - : Public Library of Science. - 1553-7374 .- 1553-7366. ; 2:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Adherence of Helicobacter pylori to inflamed gastric mucosa is dependent on the sialic acid-binding adhesin (SabA) and cognate sialylated/fucosylated glycans on the host cell surface. By in situ hybridization, H. pylori bacteria were observed in close association with erythrocytes in capillaries and post-capillary venules of the lamina propria of gastric mucosa in both infected humans and Rhesus monkeys. In vivo adherence of H. pylori to erythrocytes may require molecular mechanisms similar to the sialic acid-dependent in vitro agglutination of erythrocytes (i.e., sialic acid-dependent hemagglutination). In this context, the SabA adhesin was identified as the sialic acid-dependent hemagglutinin based on sialidase-sensitive hemagglutination, binding assays with sialylated glycoconjugates, and analysis of a series of isogenic sabA deletion mutants. The topographic presentation of binding sites for SabA on the erythrocyte membrane was mapped to gangliosides with extended core chains. However, receptor mapping revealed that the NeuAcalpha2-3Gal-disaccharide constitutes the minimal sialylated binding epitope required for SabA binding. Furthermore, clinical isolates demonstrated polymorphism in sialyl binding and complementation analysis of sabA mutants demonstrated that polymorphism in sialyl binding is an inherent property of the SabA protein itself. Gastric inflammation is associated with periodic changes in the composition of mucosal sialylation patterns. We suggest that dynamic adaptation in sialyl-binding properties during persistent infection specializes H. pylori both for individual variation in mucosal glycosylation and tropism for local areas of inflamed and/or dysplastic tissue.
  • Avican, Kemal, et al. (författare)
  • Reprogramming of Yersinia from Virulent to Persistent Mode Revealed by Complex In Vivo RNA-seq Analysis
  • 2015
  • Ingår i: PLoS Pathogens. - 1553-7366 .- 1553-7374. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We recently found that Yersinia pseudotuberculosis can be used as a model of persistent bacterial infections. We performed in vivo RNA-seq of bacteria in small cecal tissue biopsies at early and persistent stages of infection to determine strategies associated with persistence. Comprehensive analysis of mixed RNA populations from infected tissues revealed that Y. pseudotuberculosis undergoes transcriptional reprogramming with drastic down-regulation of T3SS virulence genes during persistence when the pathogen resides within the cecum. At the persistent stage, the expression pattern in many respects resembles the pattern seen in vitro at 26oC, with for example, up-regulation of flagellar genes and invA. These findings are expected to have impact on future rationales to identify suitable bacterial targets for new antibiotics. Other genes that are up-regulated during persistence are genes involved in anaerobiosis, chemotaxis, and protection against oxidative and acidic stress, which indicates the influence of different environmental cues. We found that the Crp/CsrA/RovA regulatory cascades influence the pattern of bacterial gene expression during persistence. Furthermore, arcA, fnr, frdA, and wrbA play critical roles in persistence. Our findings suggest a model for the life cycle of this enteropathogen with reprogramming from a virulent to an adapted phenotype capable of persisting and spreading by fecal shedding.
  • Bachmann, Julie, et al. (författare)
  • Affinity Proteomics Reveals Elevated Muscle Proteins in Plasma of Children with Cerebral Malaria
  • 2014
  • Ingår i: PLoS Pathogens. - 1553-7366 .- 1553-7374. ; 10:4, s. e1004038-
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic inflammation and sequestration of parasitized erythrocytes are central processes in the pathophysiology of severe Plasmodium falciparum childhood malaria. However, it is still not understood why some children are more at risks to develop malaria complications than others. To identify human proteins in plasma related to childhood malaria syndromes, multiplex antibody suspension bead arrays were employed. Out of the 1,015 proteins analyzed in plasma from more than 700 children, 41 differed between malaria infected children and community controls, whereas 13 discriminated uncomplicated malaria from severe malaria syndromes. Markers of oxidative stress were found related to severe malaria anemia while markers of endothelial activation, platelet adhesion and muscular damage were identified in relation to children with cerebral malaria. These findings suggest the presence of generalized vascular inflammation, vascular wall modulations, activation of endothelium and unbalanced glucose metabolism in severe malaria. The increased levels of specific muscle proteins in plasma implicate potential muscle damage and microvasculature lesions during the course of cerebral malaria.
  • Bett, Cyrus, et al. (författare)
  • Defining the Conformational Features of Anchorless, Poorly Neuroinvasive Prions
  • 2013
  • Ingår i: PLoS Pathogens. - : Public Library of Science. - 1553-7366 .- 1553-7374. ; 9:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Infectious prions cause diverse clinical signs and form an extraordinary range of structures, from amorphous aggregates to fibrils. How the conformation of a prion dictates the disease phenotype remains unclear. Mice expressing GPI-anchorless or GPI-anchored prion protein exposed to the same infectious prion develop fibrillar or nonfibrillar aggregates, respectively, and show a striking divergence in the disease pathogenesis. To better understand how a prion's physical properties govern the pathogenesis, infectious anchorless prions were passaged in mice expressing anchorless prion protein and the resulting prions were biochemically characterized. Serial passage of anchorless prions led to a significant decrease in the incubation period to terminal disease and altered the biochemical properties, consistent with a transmission barrier effect. After an intraperitoneal exposure, anchorless prions were only weakly neuroinvasive, as prion plaques rarely occurred in the brain yet were abundant in extracerebral sites such as heart and adipose tissue. Anchorless prions consistently showed very high stability in chaotropes or when heated in SDS, and were highly resistant to enzyme digestion. Consistent with the results in mice, anchorless prions from a human patient were also highly stable in chaotropes. These findings reveal that anchorless prions consist of fibrillar and highly stable conformers. The additional finding from our group and others that both anchorless and anchored prion fibrils are poorly neuroinvasive strengthens the hypothesis that a fibrillar prion structure impedes efficient CNS invasion.
  • Bollampalli, V. P., et al. (författare)
  • BCG Skin Infection Triggers IL-1R-MyD88-Dependent Migration of EpCAMlow CD11bhigh Skin Dendritic cells to Draining Lymph Node During CD4+ T-Cell Priming
  • 2015
  • Ingår i: PLoS Pathogens. - : Public Library of Science. - 1553-7366 .- 1553-7374. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The transport of antigen from the periphery to the draining lymph node (DLN) is critical for T-cell priming but remains poorly studied during infection with Mycobacterium bovis Bacille Calmette-Guérin (BCG). To address this we employed a mouse model to track the traffic of Dendritic cells (DCs) and mycobacteria from the BCG inoculation site in the skin to the DLN. Detection of BCG in the DLN was concomitant with the priming of antigen-specific CD4+ T cells at that site. We found EpCAMlow CD11bhigh migratory skin DCs to be mobilized during the transport of BCG to the DLN. Migratory skin DCs distributed to the T-cell area of the LN, co-localized with BCG and were found in close apposition to antigen-specific CD4+ T cells. Consequently, blockade of skin DC traffic into DLN dramatically reduced mycobacterial entry into DLN and muted T-cell priming. Interestingly, DC and mycobacterial entry into the DLN was dependent on IL-1R-I, MyD88, TNFR-I and IL-12p40. In addition, we found using DC adoptive transfers that the requirement for MyD88 in BCG-triggered migration was not restricted to the migrating DC itself and that hematopoietic expression of MyD88 was needed in part for full-fledged migration. Our observations thus identify a population of DCs that contribute towards the priming of CD4+ T cells to BCG infection by transporting bacilli into the DLN in an IL-1R-MyD88-dependent manner and reveal both DC-intrinsic and -extrinsic requirements for MyD88 in DC migration.
  • Braun, Monika, et al. (författare)
  • NK Cell Activation in Human Hantavirus Infection Explained by Virus-Induced IL-15/IL15R alpha Expression
  • 2014
  • Ingår i: PLoS Pathogens. - 1553-7366 .- 1553-7374. ; 10:11, s. e1004521-
  • Tidskriftsartikel (refereegranskat)abstract
    • Clinical infection with hantaviruses cause two severe acute diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). These diseases are characterized by strong immune activation, increased vascular permeability, and up to 50% case-fatality rates. One prominent feature observed in clinical hantavirus infection is rapid expansion of natural killer (NK) cells in peripheral blood of affected individuals. We here describe an unusually high state of activation of such expanding NK cells in the acute phase of clinical Puumala hantavirus infection. Expanding NK cells expressed markedly increased levels of activating NK cell receptors and cytotoxic effector molecules. In search for possible mechanisms behind this NK cell activation, we observed virus-induced IL-15 and IL-15R alpha on infected endothelial and epithelial cells. Hantavirus-infected cells were shown to strongly activate NK cells in a cell-cell contact-dependent way, and this response was blocked with anti-IL-15 antibodies. Surprisingly, the strength of the IL-15-dependent NK cell response was such that it led to killing of uninfected endothelial cells despite expression of normal levels of HLA class I. In contrast, hantavirus-infected cells were resistant to NK cell lysis, due to a combination of virus-induced increase in HLA class I expression levels and hantavirus-mediated inhibition of apoptosis induction. In summary, we here describe a possible mechanism explaining the massive NK cell activation and proliferation observed in HFRS patients caused by Puumala hantavirus infection. The results add further insights into mechanisms behind the immunopathogenesis of hantavirus infections in humans and identify new possible targets for intervention.
  • Bruening, Janina, et al. (författare)
  • Hepatitis C virus enters liver cells using the CD81 receptor complex proteins calpain-5 and CBLB
  • 2018
  • Ingår i: PLoS Pathogens. - 1553-7366 .- 1553-7374. ; 14:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatitis C virus (HCV) and the malaria parasite Plasmodium use the membrane protein CD81 to invade human liver cells. Here we mapped 33 host protein interactions of CD81 in primary human liver and hepatoma cells using high-resolution quantitative proteomics. In the CD81 protein network, we identified five proteins which are HCV entry factors or facilitators including epidermal growth factor receptor (EGFR). Notably, we discovered calpain-5 (CAPN5) and the ubiquitin ligase Casitas B-lineage lymphoma proto-oncogene B (CBLB) to form a complex with CD81 and support HCV entry. CAPN5 and CBLB were required for a post-binding and pre-replication step in the HCV life cycle. Knockout of CAPN5 and CBLB reduced susceptibility to all tested HCV genotypes, but not to other enveloped viruses such as vesicular stomatitis virus and human coronavirus. Furthermore, Plasmodium sporozoites relied on a distinct set of CD81 interaction partners for liver cell entry. Our findings reveal a comprehensive CD81 network in human liver cells and show that HCV and Plasmodium highjack selective CD81 interactions, including CAPN5 and CBLB for HCV, to invade cells.
  • Buggert, Marcus, et al. (författare)
  • T-bet and Eomes Are Differentially Linked to the Exhausted Phenotype of CD8+ T Cells in HIV Infection.
  • 2014
  • Ingår i: PLoS Pathogens. - : Public Library of Science. - 1553-7366 .- 1553-7374. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • CD8+ T cell exhaustion represents a major hallmark of chronic HIV infection. Two key transcription factors governing CD8+ T cell differentiation, T-bet and Eomesodermin (Eomes), have previously been shown in mice to differentially regulate T cell exhaustion in part through direct modulation of PD-1. Here, we examined the relationship between these transcription factors and the expression of several inhibitory receptors (PD-1, CD160, and 2B4), functional characteristics and memory differentiation of CD8+ T cells in chronic and treated HIV infection. The expression of PD-1, CD160, and 2B4 on total CD8+ T cells was elevated in chronically infected individuals and highly associated with a T-betdimEomeshi expressional profile. Interestingly, both resting and activated HIV-specific CD8+ T cells in chronic infection were almost exclusively T-betdimEomeshi cells, while CMV-specific CD8+ T cells displayed a balanced expression pattern of T-bet and Eomes. The T-betdimEomeshi virus-specific CD8+ T cells did not show features of terminal differentiation, but rather a transitional memory phenotype with poor polyfunctional (effector) characteristics. The transitional and exhausted phenotype of HIV-specific CD8+ T cells was longitudinally related to persistent Eomes expression after antiretroviral therapy (ART) initiation. Strikingly, these characteristics remained stable up to 10 years after ART initiation. This study supports the concept that poor human viral-specific CD8+ T cell functionality is due to an inverse expression balance between T-bet and Eomes, which is not reversed despite long-term viral control through ART. These results aid to explain the inability of HIV-specific CD8+ T cells to control the viral replication post-ART cessation.
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (212)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (211)
övrigt vetenskapligt (2)
Mörgelin, Matthias (11)
Klingstrom, J (6)
Malmsten, Martin (6)
Gupta, S. (5)
Deeks, SG (5)
Ljunggren, HG (5)
visa fler...
Urban, Constantin F (5)
Achour, A (5)
Svanborg, Catharina (5)
Herwald, Heiko (5)
Borén, Thomas (5)
Sonnerborg, A (4)
Schmidtchen, Artur (4)
Buggert, M (4)
Sandalova, T (4)
Billker, Oliver (4)
Norrby-Teglund, A (4)
Henriques-Normark, B (4)
Rottenberg, ME (4)
Nylen, S (4)
McInerney, GM (4)
Gao, Y. (3)
Braun, M. (3)
Sandberg, JK (3)
Ojala, PM (3)
Wahlgren, M (3)
Uhlin, Bernt Eric (3)
Olsson, T (3)
Jansson, M (3)
Olsen, Björn (3)
Röhm, Marc (3)
Hedestam, GBK (3)
Dubois, Andre (3)
Blom, Anna (3)
Sjöstedt, Anders (3)
Bjorkstrom, NK (3)
Swann, JR (3)
Papareddy, Praveen (3)
Norrby-Teglund, Anna (3)
Dobrindt, Ulrich (3)
Wullt, Björn (3)
Hultmark, Dan (3)
Rydengård, Victoria (3)
Arnqvist, Anna (3)
Broliden, K (3)
Heroven, Ann Kathrin (3)
Dersch, Petra (3)
Stehle, Thilo (3)
Smed-Sorensen, A (3)
Sellin, Mikael E. (3)
visa färre...
Karolinska Institutet (94)
Umeå universitet (43)
Lunds universitet (37)
Uppsala universitet (29)
Göteborgs universitet (17)
Stockholms universitet (9)
visa fler...
Sveriges Lantbruksuniversitet (8)
Kungliga Tekniska Högskolan (7)
Linköpings universitet (6)
Chalmers tekniska högskola (2)
Örebro universitet (1)
Linnéuniversitetet (1)
visa färre...
Engelska (213)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (96)
Naturvetenskap (43)


pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy