SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1553 7366 OR L773:1553 7374 ;lar1:(su)"

Search: L773:1553 7366 OR L773:1553 7374 > Stockholm University

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bradley, Frideborg, et al. (author)
  • Multi-omics analysis of the cervical epithelial integrity of women using depot medroxyprogesterone acetate
  • 2022
  • In: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 18:5
  • Journal article (peer-reviewed)abstract
    • Depot medroxyprogesterone acetate (DMPA) is an injectable hormonal contraceptive used by millions of women worldwide. However, experimental studies have associated DMPA use with genital epithelial barrier disruption and mucosal influx of human immunodeficiency virus (HIV) target cells. We explored the underlying molecular mechanisms of these findings. Ectocervical biopsies and cervicovaginal lavage (CVL) specimens were collected from HIV-seronegative Kenyan sex workers using DMPA (n = 32) or regularly cycling controls (n = 64). Tissue samples were assessed by RNA-sequencing and quantitative imaging analysis, whereas protein levels were measured in CVL samples. The results suggested a DMPA-associated upregulation of genes involved in immune regulation, including genes associated with cytokine-mediated signaling and neutrophil-mediated immunity. A transcription factor analysis further revealed DMPA-associated upregulation of RELA and NFKB1 which are involved in several immune activation pathways. Several genes significantly downregulated in the DMPA versus the control group were involved in epithelial structure and function, including genes encoding keratins, small proline-rich proteins, and cell-cell adhesion proteins. Pathway analyses indicated DMPA use was associated with immune activation and suppression of epithelium development, including keratinization and cornification processes. The cervicovaginal microbiome composition (Lactobacillus dominant and non-Lactobacillus dominant) had no overall interactional impact on the DMPA associated tissue gene expression. Imaging analysis verified that DMPA use was associated with an impaired epithelial layer as illustrated by staining for the selected epithelial junction proteins E-cadherin, desmoglein-1 and claudin-1. Additional staining for CD4(+) cells revealed a more superficial location of these cells in the ectocervical epithelium of DMPA users versus controls. Altered protein levels of SERPINB1 and ITIH2 were further observed in the DMPA group. Identification of specific impaired epithelial barrier structures at the gene expression level, which were verified at the functional level by tissue imaging analysis, illustrates mechanisms by which DMPA adversely may affect the integrity of the genital mucosa. Author summarySexual transmission accounts for the majority of all new HIV infections in women, and alterations to the mucosal environment of the female genital tract have been associated with an increase in the risk of acquiring HIV. Observational epidemiological studies have implied that the use of the injectable hormonal contraceptive depot medroxyprogesterone acetate (DMPA) may be associated with increased HIV-acquisition. However, a prospective clinical study has not confirmed this association and the controversial findings are currently evaluated in the context of international reproductive health policies. Several studies using various model systems indicate that DMPA affects the integrity of the genital epithelial barrier as well as the mucosal immune system, but the exact mechanisms remain largely unknown. To characterize the effect of DMPA on the genital mucosal environment, we used a multi-omics approach to assess paired genital secretions and cervical tissue samples from long-term regular DMPA users living in Kenya. This unique cohort represents a population at risk of HIV infection in which DMPA is one of the most commonly used hormonal contraceptives. We identified impaired cervical epithelial barrier structures, including DMPA-associated reduction in the expression of cell-cell adhesion molecules, keratins, small proline-rich proteins and a thinner upper epithelial layer with more superficially located CD4(+) cells. Gene set enrichment pathway analyses indicated DMPA use was associated with immune activation and suppression of epithelium development including keratinization and cornification pathways. Protein analysis identified altered levels of selected anti-proteases. Our findings illustrate mechanisms by which DMPA adversely may affect the integrity of the genital mucosa.
  •  
2.
  • Carter, Victoria, et al. (author)
  • Killer bee molecules : antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium
  • 2013
  • In: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 9:11
  • Journal article (peer-reviewed)abstract
    • A new generation of strategies is evolving that aim to block malaria transmission by employing genetically modified vectors or mosquito pathogens or symbionts that express anti-parasite molecules. Whilst transgenic technologies have advanced rapidly, there is still a paucity of effector molecules with potent anti-malaria activity whose expression does not cause detrimental effects on mosquito fitness. Our objective was to examine a wide range of antimicrobial peptides (AMPs) for their toxic effects on Plasmodium and anopheline mosquitoes. Specifically targeting early sporogonic stages, we initially screened AMPs for toxicity against a mosquito cell line and P. berghei ookinetes. Promising candidate AMPs were fed to mosquitoes to monitor adverse fitness effects, and their efficacy in blocking rodent malaria infection in Anopheles stephensi was assessed. This was followed by tests to determine their activity against P. falciparum in An. gambiae, initially using laboratory cultures to infect mosquitoes, then culminating in preliminary assays in the field using gametocytes and mosquitoes collected from the same area in Mali, West Africa. From a range of 33 molecules, six AMPs able to block Plasmodium development were identified: Anoplin, Duramycin, Mastoparan X, Melittin, TP10 and Vida3. With the exception of Anoplin and Mastoparan X, these AMPs were also toxic to an An. gambiae cell line at a concentration of 25 µM. However, when tested in mosquito blood feeds, they did not reduce mosquito longevity or egg production at concentrations of 50 µM. Peptides effective against cultured ookinetes were less effective when tested in vivo and differences in efficacy against P. berghei and P. falciparum were seen. From the range of molecules tested, the majority of effective AMPs were derived from bee/wasp venoms.
  •  
3.
  • Guerriero, Gea, et al. (author)
  • Chitin Synthases from Saprolegnia Are Involved in Tip Growth and Represent a Potential Target for Anti-Oomycete Drugs
  • 2010
  • In: PLOS PATHOG. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 6:8, s. e1001070-
  • Journal article (peer-reviewed)abstract
    • Oomycetes represent some of the most devastating plant and animal pathogens. Typical examples are Phytophthora infestans, which causes potato and tomato late blight, and Saprolegnia parasitica, responsible for fish diseases. Despite the economical and environmental importance of oomycete diseases, their control is difficult, particularly in the aquaculture industry. Carbohydrate synthases are vital for hyphal growth and represent interesting targets for tackling the pathogens. The existence of 2 different chitin synthase genes (SmChs1 and SmChs2) in Saprolegnia monoica was demonstrated using bioinformatics and molecular biology approaches. The function of SmCHS2 was unequivocally demonstrated by showing its catalytic activity in vitro after expression in Pichia pastoris. The recombinant SmCHS1 protein did not exhibit any activity in vitro, suggesting that it requires other partners or effectors to be active, or that it is involved in a different process than chitin biosynthesis. Both proteins contained N-terminal Microtubule Interacting and Trafficking domains, which have never been reported in any other known carbohydrate synthases. These domains are involved in protein recycling by endocytosis. Enzyme kinetics revealed that Saprolegnia chitin synthases are competitively inhibited by nikkomycin Z and quantitative PCR showed that their expression is higher in presence of the inhibitor. The use of nikkomycin Z combined with microscopy showed that chitin synthases are active essentially at the hyphal tips, which burst in the presence of the inhibitor, leading to cell death. S. parasitica was more sensitive to nikkomycin Z than S. monoica. In conclusion, chitin synthases with species-specific characteristics are involved in tip growth in Saprolegnia species and chitin is vital for the micro-organisms despite its very low abundance in the cell walls. Chitin is most likely synthesized transiently at the apex of the cells before cellulose, the major cell wall component in oomycetes. Our results provide important fundamental information on cell wall biogenesis in economically important species, and demonstrate the potential of targeting oomycete chitin synthases for disease control.
  •  
4.
  • Kanatani, Sachie, et al. (author)
  • Voltage-dependent calcium channel signaling mediates GABA(A) receptor-induced migratory activation of dendritic cells infected by Toxoplasma gondii
  • 2017
  • In: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 13:12
  • Journal article (peer-reviewed)abstract
    • The obligate intracellular parasite Toxoplasma gondii exploits cells of the immune system to disseminate. Upon T. gondii-infection,. Upsilon-aminobutyric acid (GABA)/GABAA receptor signaling triggers a hypermigratory phenotype in dendritic cells (DCs) by unknown signal transduction pathways. Here, we demonstrate that calcium (Ca2+) signaling in DCs is indispensable for T. gondii-induced DC hypermotility and transmigration in vitro. We report that activation of GABAA receptors by GABA induces transient Ca2+ entry in DCs. Murine bone marrow-derived DCs preferentially expressed the L-type voltage-dependent Ca2+ channel (VDCC) subtype Cav1.3. Silencing of Cav1.3 by short hairpin RNA or selective pharmacological antagonism of VDCCs abolished the Toxoplasma-induced hypermigratory phenotype. In a mouse model of toxoplasmosis, VDCC inhibition of adoptively transferred Toxoplasma-infected DCs delayed the appearance of cell-associated parasites in the blood circulation and reduced parasite dissemination to target organs. The present data establish that T. gondii-induced hypermigration of DCs requires signaling via VDCCs and that Ca2+ acts as a second messenger to GABAergic signaling via the VDCC Cav1.3. The findings define a novel motility-related signaling axis in DCs and unveil that interneurons and DCs share common GABAergic motogenic pathways. T. gondii employs GABAergic non-canonical pathways to induce host cell migration and facilitate dissemination.
  •  
5.
  • Lindberg, Bo G., et al. (author)
  • Nubbin isoform antagonism governs Drosophila intestinal immune homeostasis
  • 2018
  • In: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 14:3
  • Journal article (peer-reviewed)abstract
    • Gut immunity is regulated by intricate and dynamic mechanisms to ensure homeostasis despite a constantly changing microbial environment. Several regulatory factors have been described to participate in feedback responses to prevent aberrant immune activity. Little is, however, known about how transcriptional programs are directly tuned to efficiently adapt host gut tissues to the current microbiome. Here we show that the POU/Oct gene nubbin (nub) encodes two transcription factor isoforms, Nub-PB and Nub-PD, which antagonistically regulate immune gene expression in Drosophila. Global transcriptional profiling of adult flies overexpressing Nub-PB in immunocompetent tissues revealed that this form is a strong transcriptional activator of a large set of immune genes. Further genetic analyses showed that Nub-PB is sufficient to drive expression both independently and in conjunction with nuclear factor kappa B (NF-κB), JNK and JAK/STAT pathways. Similar overexpression of Nub-PD did, conversely, repress expression of the same targets. Strikingly, isoform co-overexpression normalized immune gene transcription, suggesting antagonistic activities. RNAi-mediated knockdown of individual nub transcripts in enterocytes confirmed antagonistic regulation by the two isoforms and that both are necessary for normal immune gene transcription in the midgut. Furthermore, enterocyte-specific Nub-PB expression levels had a strong impact on gut bacterial load as well as host lifespan. Overexpression of Nub-PB enhanced bacterial clearance of ingested Erwinia carotovora carotovora 15. Nevertheless, flies quickly succumbed to the infection, suggesting a deleterious immune response. In line with this, prolonged overexpression promoted a proinflammatory signature in the gut with induction of JNK and JAK/STAT pathways, increased apoptosis and stem cell proliferation. These findings highlight a novel regulatory mechanism of host-microbe interactions mediated by antagonistic transcription factor isoforms.
  •  
6.
  • Liu, Ning-Ning, et al. (author)
  • Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence
  • 2018
  • In: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 14:7
  • Journal article (peer-reviewed)abstract
    • Phosphate is an essential macronutrient required for cell growth and division. Pho84 is the major high-affinity cell-surface phosphate importer of Saccharomyces cerevisiae and a crucial element in the phosphate homeostatic system of this model yeast. We found that loss of Candida albicans Pho84 attenuated virulence in Drosophila and murine oropharyngeal and disseminated models of invasive infection, and conferred hypersensitivity to neutrophil killing. Susceptibility of cells lacking Pho84 to neutrophil attack depended on reactive oxygen species (ROS): pho84-/- cells were no more susceptible than wild type C. albicans to neutrophils from a patient with chronic granulomatous disease, or to those whose oxidative burst was pharmacologically inhibited or neutralized. pho84-/- mutants hyperactivated oxidative stress signalling. They accumulated intracellular ROS in the absence of extrinsic oxidative stress, in high as well as low ambient phosphate conditions. ROS accumulation correlated with diminished levels of the unique superoxide dismutase Sod3 in pho84-/- cells, while SOD3 overexpression from a conditional promoter substantially restored these cells' oxidative stress resistance in vitro. Repression of SOD3 expression sharply increased their oxidative stress hypersensitivity. Neither of these oxidative stress management effects of manipulating SOD3 transcription was observed in PHO84 wild type cells. Sod3 levels were not the only factor driving oxidative stress effects on pho84-/- cells, though, because overexpressing SOD3 did not ameliorate these cells' hypersensitivity to neutrophil killing ex vivo, indicating Pho84 has further roles in oxidative stress resistance and virulence. Measurement of cellular metal concentrations demonstrated that diminished Sod3 expression was not due to decreased import of its metal cofactor manganese, as predicted from the function of S. cerevisiae Pho84 as a low-affinity manganese transporter. Instead of a role of Pho84 in metal transport, we found its role in TORC1 activation to impact oxidative stress management: overexpression of the TORC1-activating GTPase Gtr1 relieved the Sod3 deficit and ROS excess in pho84-/- null mutant cells, though it did not suppress their hypersensitivity to neutrophil killing or hyphal growth defect. Pharmacologic inhibition of Pho84 by small molecules including the FDA-approved drug foscarnet also induced ROS accumulation. Inhibiting Pho84 could hence support host defenses by sensitizing C. albicans to oxidative stress.
  •  
7.
  • Sigurlásdóttir, Sara, et al. (author)
  • Host cell-derived lactate functions as an effector molecule in Neisseria meningitidis microcolony dispersal
  • 2017
  • In: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 13:4
  • Journal article (peer-reviewed)abstract
    • The development of meningococcal disease, caused by the human pathogen Neisseria meningitidis, is preceded by the colonization of the epithelial layer in the nasopharynx. After initial adhesion to host cells meningococci form aggregates, through pilus-pilus interactions, termed microcolonies from which the bacteria later detach. Dispersal from microcolonies enables access to new colonization sites and facilitates the crossing of the cell barrier; however, this process is poorly understood. In this study, we used live-cell imaging to investigate the process of N. meningitidis microcolony dispersal. We show that direct contact with host cells is not required for microcolony dispersal, instead accumulation of a host-derived effector molecule induces microcolony dispersal. By using a host-cell free approach, we demonstrated that lactate, secreted from host cells, initiate rapid dispersal of microcolonies. Interestingly, metabolic utilization of lactate by the bacteria was not required for induction of dispersal, suggesting that lactate plays a role as a signaling molecule. Furthermore, Neisseria gonorrhoeae microcolony dispersal could also be induced by lactate. These findings reveal a role of host-secreted lactate in microcolony dispersal and virulence of pathogenic Neisseria.
  •  
8.
  • Silao, Fitz Gerald S., et al. (author)
  • Glutamate dehydrogenase (Gdh2)-dependent alkalization is dispensable for escape from macrophages and virulence of Candida albicans
  • 2020
  • In: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 16:9
  • Journal article (peer-reviewed)abstract
    • Candida albicans cells depend on the energy derived from amino acid catabolism to induce and sustain hyphal growth inside phagosomes of engulfing macrophages. The concomitant deamination of amino acids is thought to neutralize the acidic microenvironment of phagosomes, a presumed requisite for survival and initiation of hyphal growth. Here, in contrast to an existing model, we show that mitochondrial-localized NAD+-dependent glutamate dehydrogenase (GDH2) catalyzing the deamination of glutamate to α-ketoglutarate, and not the cytosolic urea amidolyase (DUR1,2), accounts for the observed alkalization of media when amino acids are the sole sources of carbon and nitrogen. C. albicans strains lacking GDH2 (gdh2-/-) are viable and do not extrude ammonia on amino acid-based media. Environmental alkalization does not occur under conditions of high glucose (2%), a finding attributable to glucose-repression of GDH2 expression and mitochondrial function. Consistently, inhibition of oxidative phosphorylation or mitochondrial translation by antimycin A or chloramphenicol, respectively, prevents alkalization. GDH2 expression and mitochondrial function are derepressed as glucose levels are lowered from 2% (~110 mM) to 0.2% (~11 mM), or when glycerol is used as primary carbon source. Using time-lapse microscopy, we document that gdh2-/- cells survive, filament and escape from primary murine macrophages at rates indistinguishable from wildtype. In intact hosts, such as in fly and murine models of systemic candidiasis, gdh2-/- mutants are as virulent as wildtype. Thus, although Gdh2 has a critical role in central nitrogen metabolism, Gdh2-catalyzed deamination of glutamate is surprisingly dispensable for escape from macrophages and virulence. Consistently, using the pH-sensitive dye (pHrodo), we observed no significant difference between wildtype and gdh2-/- mutants in phagosomal pH modulation. Following engulfment of fungal cells, the phagosomal compartment is rapidly acidified and hyphal growth initiates and sustained under consistently acidic conditions within phagosomes. Together, our results demonstrate that amino acid-dependent alkalization is not essential for hyphal growth, survival in macrophages and hosts. An accurate understanding of the microenvironment within macrophage phagosomes and the metabolic events underlying the survival of phagocytized C. albicans cells and their escape are critical to understanding the host-pathogen interactions that ultimately determine the pathogenic outcome.
  •  
9.
  • Silao, Fitz-Gerald S., 1985-, et al. (author)
  • Proline catabolism is a key factor facilitating Candida albicans pathogenicity
  • 2023
  • In: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 19:11 NOVEMBER
  • Journal article (peer-reviewed)abstract
    • Candida albicans, the primary etiology of human mycoses, is well-adapted to catabolize proline to obtain energy to initiate morphological switching (yeast to hyphal) and for growth. We report that put1-/- and put2-/- strains, carrying defective Proline UTilization genes, display remarkable proline sensitivity with put2-/- mutants being hypersensitive due to the accumulation of the toxic intermediate pyrroline-5-carboxylate (P5C), which inhibits mitochondrial respiration. The put1-/- and put2-/- mutations attenuate virulence in Drosophila and murine candidemia models and decrease survival in human neutrophils and whole blood. Using intravital 2-photon microscopy and label-free non-linear imaging, we visualized the initial stages of C. albicans cells infecting a kidney in real-time, directly deep in the tissue of a living mouse, and observed morphological switching of wildtype but not of put2-/- cells. Multiple members of the Candida species complex, including C. auris, are capable of using proline as a sole energy source. Our results indicate that a tailored proline metabolic network tuned to the mammalian host environment is a key feature of opportunistic fungal pathogens.
  •  
10.
  • Tabusi, Mahebali, et al. (author)
  • Neuronal death in pneumococcal meningitis is triggered by pneumolysin and RrgA interactions with beta-actin
  • 2021
  • In: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 17:3
  • Journal article (peer-reviewed)abstract
    • Neuronal damage is a major consequence of bacterial meningitis, but little is known about mechanisms of bacterial interaction with neurons leading to neuronal cell death. Streptococcus pneumoniae (pneumococcus) is a leading cause of bacterial meningitis and many survivors develop neurological sequelae after the acute infection has resolved, possibly due to neuronal damage. Here, we studied mechanisms for pneumococcal interactions with neurons. Using human primary neurons, pull-down experiments and mass spectrometry, we show that pneumococci interact with the cytoskeleton protein beta-actin through the pilus-1 adhesin RrgA and the cytotoxin pneumolysin (Ply), thereby promoting adhesion and invasion of neurons, and neuronal death. Using our bacteremia-derived meningitis mouse model, we observe that RrgA- and Ply-expressing pneumococci co-localize with neuronal beta-actin. Using purified proteins, we show that Ply, through its cholesterol-binding domain 4, interacts with the neuronal plasma membrane, thereby increasing the exposure on the outer surface of beta-actin filaments, leading to more beta-actin binding sites available for RrgA binding, and thus enhanced pneumococcal interactions with neurons. Pneumococcal infection promotes neuronal death possibly due to increased intracellular Ca2+ levels depending on presence of Ply, as well as on actin cytoskeleton disassembly. STED super-resolution microscopy showed disruption of beta-actin filaments in neurons infected with pneumococci expressing RrgA and Ply. Finally, neuronal death caused by pneumococcal infection could be inhibited using antibodies against beta-actin. The generated data potentially helps explaining mechanisms for why pneumococci frequently cause neurological sequelae. Author summary Neuronal damage is a major consequence of meningitis. Streptococcus pneumoniae (pneumococcus) is the leading etiological cause of bacterial meningitis, yet how pneumococci interact with neurons and cause neuronal death is poorly understood. Using human neurons in vitro and our established bacteremia-derived meningitis mouse model in vivo, we found that pneumococci use the pilus-1 adhesin RrgA and the cytotoxin pneumolysin (Ply) to interact with neuronal beta-actin expressed on the plasma membrane. Also, we demonstrate that Ply interaction with the neuronal plasma membrane increase the exposure of beta-actin on the neuronal plasma membrane, allowing more pneumococci to adhere to neurons through RrgA-beta-actin interaction. Moreover, neurons infected with RrgA- and Ply-expressing pneumococci showed increased intracellular Ca2+ levels and disruption of beta-actin filaments, possibly leading to neuronal death. Importantly, by blocking pneumococcal-beta-actin interaction using antibodies, we could reduce neuronal cell death after pneumococcal infection.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view