SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1553 7366 OR L773:1553 7374 ;lar1:(uu)"

Sökning: L773:1553 7366 OR L773:1553 7374 > Uppsala universitet

  • Resultat 1-10 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bachmann, Julie, et al. (författare)
  • Affinity Proteomics Reveals Elevated Muscle Proteins in Plasma of Children with Cerebral Malaria
  • 2014
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 10:4, s. e1004038-
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic inflammation and sequestration of parasitized erythrocytes are central processes in the pathophysiology of severe Plasmodium falciparum childhood malaria. However, it is still not understood why some children are more at risks to develop malaria complications than others. To identify human proteins in plasma related to childhood malaria syndromes, multiplex antibody suspension bead arrays were employed. Out of the 1,015 proteins analyzed in plasma from more than 700 children, 41 differed between malaria infected children and community controls, whereas 13 discriminated uncomplicated malaria from severe malaria syndromes. Markers of oxidative stress were found related to severe malaria anemia while markers of endothelial activation, platelet adhesion and muscular damage were identified in relation to children with cerebral malaria. These findings suggest the presence of generalized vascular inflammation, vascular wall modulations, activation of endothelium and unbalanced glucose metabolism in severe malaria. The increased levels of specific muscle proteins in plasma implicate potential muscle damage and microvasculature lesions during the course of cerebral malaria.
  •  
2.
  • Barrenäs, Fredrik, et al. (författare)
  • Interleukin-15 response signature predicts RhCMV/SIV vaccine efficacy
  • 2021
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 17:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Simian immunodeficiency virus (SIV) challenge of rhesus macaques (RMs) vaccinated with strain 68-1 Rhesus Cytomegalovirus (RhCMV) vectors expressing SIV proteins (RhCMV/SIV) results in a binary outcome: stringent control and subsequent clearance of highly pathogenic SIV in similar to 55% of vaccinated RMs with no protection in the remaining 45%. Although previous work indicates that unconventionally restricted, SIV-specific, effector-memory (EM)-biased CD8(+) T cell responses are necessary for efficacy, the magnitude of these responses does not predict efficacy, and the basis of protection vs. non-protection in 68-1 RhCMV/SIV vector-vaccinated RMs has not been elucidated. Here, we report that 68-1 RhCMV/SIV vector administration strikingly alters the whole blood transcriptome of vaccinated RMs, with the sustained induction of specific immune-related pathways, including immune cell, toll-like receptor (TLR), inflammasome/cell death, and interleukin-15 (IL-15) signaling, significantly correlating with subsequent vaccine efficacy. Treatment of a separate RM cohort with IL-15 confirmed the central involvement of this cytokine in the protection signature, linking the major innate and adaptive immune gene expression networks that correlate with RhCMV/SIV vaccine efficacy. This change-from-baseline IL-15 response signature was also demonstrated to significantly correlate with vaccine efficacy in an independent validation cohort of vaccinated and challenged RMs. The differential IL-15 gene set response to vaccination strongly correlated with the pre-vaccination activity of this pathway, with reduced baseline expression of IL-15 response genes significantly correlating with higher vaccine-induced induction of IL-15 signaling and subsequent vaccine protection, suggesting that a robust de novo vaccine-induced IL-15 signaling response is needed to program vaccine efficacy. Thus, the RhCMV/SIV vaccine imparts a coordinated and persistent induction of innate and adaptive immune pathways featuring IL-15, a known regulator of CD8(+) T cell function, that support the ability of vaccine-elicited unconventionally restricted CD8(+) T cells to mediate protection against SIV challenge.
  •  
3.
  • Daskalov, Asen, et al. (författare)
  • Contribution of specific residues of the β-solenoid fold to HET-s prion function, amyloid structure and stability.
  • 2014
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 10:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The [Het-s] prion of the fungus Podospora anserina represents a good model system for studying the structure-function relationship in amyloid proteins because a high resolution solid-state NMR structure of the amyloid prion form of the HET-s prion forming domain (PFD) is available. The HET-s PFD adopts a specific β-solenoid fold with two rungs of β-strands delimiting a triangular hydrophobic core. A C-terminal loop folds back onto the rigid core region and forms a more dynamic semi-hydrophobic pocket extending the hydrophobic core. Herein, an alanine scanning mutagenesis of the HET-s PFD was conducted. Different structural elements identified in the prion fold such as the triangular hydrophobic core, the salt bridges, the asparagines ladders and the C-terminal loop were altered and the effect of these mutations on prion function, fibril structure and stability was assayed. Prion activity and structure were found to be very robust; only a few key mutations were able to corrupt structure and function. While some mutations strongly destabilize the fold, many substitutions in fact increase stability of the fold. This increase in structural stability did not influence prion formation propensity in vivo. However, if an Ala replacement did alter the structure of the core or did influence the shape of the denaturation curve, the corresponding variant showed a decreased prion efficacy. It is also the finding that in addition to the structural elements of the rigid core region, the aromatic residues in the C-terminal semi-hydrophobic pocket are critical for prion propagation. Mutations in the latter region either positively or negatively affected prion formation. We thus identify a region that modulates prion formation although it is not part of the rigid cross-β core, an observation that might be relevant to other amyloid models.
  •  
4.
  • Du, Qian, et al. (författare)
  • Porcine circovirus type 2 infection promotes the SUMOylation of nucleophosmin-1 to facilitate the viral circular single-stranded DNA replication
  • 2024
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 20:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanism of genome DNA replication in circular single-stranded DNA viruses is currently a mystery, except for the fact that it undergoes rolling-circle replication. Herein, we identified SUMOylated porcine nucleophosmin-1 (pNPM1), which is previously reported to be an interacting protein of the viral capsid protein, as a key regulator that promotes the genome DNA replication of porcine single-stranded DNA circovirus. Upon porcine circovirus type 2 (PCV2) infection, SUMO2/3 were recruited and conjugated with the K263 site of pNPM1's C-terminal domain to SUMOylate pNPM1, subsequently, the SUMOylated pNPM1 were translocated in nucleoli to promote the replication of PCV2 genome DNA. The mutation of the K263 site reduced the SUMOylation levels of pNPM1 and the nucleolar localization of pNPM1, resulting in a decrease in the level of PCV2 DNA replication. Meanwhile, the mutation of the K263 site prevented the interaction of pNPM1 with PCV2 DNA, but not the interaction of pNPM1 with PCV2 Cap. Mechanistically, PCV2 infection increased the expression levels of Ubc9, the only E2 enzyme involved in SUMOylation, through the Cap-mediated activation of ERK signaling. The upregulation of Ubc9 promoted the interaction between pNPM1 and TRIM24, a potential E3 ligase for SUMOylation, thereby facilitating the SUMOylation of pNPM1. The inhibition of ERK activation could significantly reduce the SUMOylation levels and the nucleolar localization of pNPM1, as well as the PCV2 DNA replication levels. These results provide new insights into the mechanism of circular single-stranded DNA virus replication and highlight NPM1 as a potential target for inhibiting PCV2 replication. Different types of DNA viruses employ different mechanisms to replicate their genome DNA. Porcine circovirus type 2 (PCV2) is the most representative circular single-stranded DNA virus that harms the pig industry all over the world. In this study, we found that the PCV2 Cap interacting protein pNPM1 also interacts with PCV2 DNA in a SUMOylated form to promote PCV2 DNA replication. The SUMOylation of pNPM1 at the conserved K263 site is critical for the interaction of pNPM1 with PCV2 DNA and the replication of PCV2 DNA. Furthermore, we found that PCV2 infection promotes the SUMO2/3 mediated SUMOylation of pNPM1, while does not significantly alter the expression level of pNPM1. PCV2 Cap is the major component that promotes pNPM1 SUMOylation by activating ERK/Ubc9/TRIM24 signalings. These results contribute to a better understanding of the replication mechanism of circular single-stranded DNA viruses, particularly PCV2.
  •  
5.
  • Edström, Anneli, et al. (författare)
  • beta-Microseminoprotein Endows Post Coital Seminal Plasma with Potent Candidacidal Activity by a Calcium- and pH-Dependent Mechanism
  • 2012
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 8:4, s. e1002625-
  • Tidskriftsartikel (refereegranskat)abstract
    • The innate immune factors controlling Candida albicans are mostly unknown. Vulvovaginal candidiasis is common in women and affects approximately 70-75% of all women at least once. Despite the propensity of Candida to colonize the vagina, transmission of Candida albicans following sexual intercourse is very rare. This prompted us to investigate whether the post coital vaginal milieu contained factors active against C. albicans. By CFU assays, we found prominent candidacidal activity of post coital seminal plasma at both neutral and the acid vaginal pH. In contrast, normal seminal plasma did not display candidacidal activity prior to acidification. By antifungal gel overlay assay, one clearing zone corresponding to a protein band was found in both post coital and normal seminal plasma, which was subsequently identified as beta-microseminoprotein. At neutral pH, the fungicidal activity of beta-microseminoprotein and seminal plasma was inhibited by calcium. By NMR spectroscopy, amino acid residue E-71 was shown to be critical for the calcium coordination. The acidic vaginal milieu unleashed the fungicidal activity by decreasing the inhibitory effect of calcium. The candidacidal activity of beta-microseminoprotein was mapped to a fragment of the C-terminal domain with no structural similarity to other known proteins. A homologous fragment from porcine beta-microseminoprotein demonstrated calcium-dependent fungicidal activity in a CFU assay, suggesting this may be a common feature for members of the beta-microseminoprotein family. By electron microscopy, beta-microseminoprotein was found to cause lysis of Candida. Liposome experiments demonstrated that beta-microseminoprotein was active towards ergosterol-containing liposomes that mimic fungal membranes, offering an explanation for the selectivity against fungi. These data identify beta-microseminoprotein as an important innate immune factor active against C. albicans and may help explain the low sexual transmission rate of Candida.
  •  
6.
  • Fattinger, Stefan A., et al. (författare)
  • Salmonella Typhimurium discreet-invasion of the murine gut absorptive epithelium
  • 2020
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 16:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial pathogens can use secreted effector molecules to drive entry into host cells. Studies of the intestinal pathogen S.Tm have been central to uncover the mechanistic basis for the entry process. More than two decades of research have resulted in a detailed model for how S.Tm invades gut epithelial cells through effector triggering of large Rho-GTPase-dependent actin ruffles. However, the evidence for this model comes predominantly from studies in cultured cell lines. These experimental systems lack many of the architectural and signaling features of the intact gut epithelium. Our study surprisingly reveals that in the intact mouse gut, S.Tm invades absorptive epithelial cells through a process that does not require the Rho-GTPase-activating effectors and can proceed in the absence of the prototypical ruffling response. Instead, S.Tm exploits another effector, SipA, to sneak in through discreet entry structures close to cell-cell junctions. Our results challenge the current model for S.Tm epithelial cell entry and emphasizes the need of taking a physiological host cell context into account when studying bacterium-host cell interactions. Salmonella enterica serovar Typhimurium (S.Tm) infections of cultured cell lines have given rise to the ruffle model for epithelial cell invasion. According to this model, the Type-Three-Secretion-System-1 (TTSS-1) effectors SopB, SopE and SopE2 drive an explosive actin nucleation cascade, resulting in large lamellipodia- and filopodia-containing ruffles and cooperative S.Tm uptake. However, cell line experiments poorly recapitulate many of the cell and tissue features encountered in the host's gut mucosa. Here, we employed bacterial genetics and multiple imaging modalities to compare S.Tm invasion of cultured epithelial cell lines and the gut absorptive epithelium in vivo in mice. In contrast to the prevailing ruffle-model, we find that absorptive epithelial cell entry in the mouse gut occurs through "discreet-invasion". This distinct entry mode requires the conserved TTSS-1 effector SipA, involves modest elongation of local microvilli in the absence of expansive ruffles, and does not favor cooperative invasion. Discreet-invasion preferentially targets apicolateral hot spots at cell-cell junctions and shows strong dependence on local cell neighborhood. This proof-of-principle evidence challenges the current model for how S.Tm can enter gut absorptive epithelial cells in their intact in vivo context.
  •  
7.
  • Franzen, Oscar, et al. (författare)
  • Draft genome sequencing of Giardia intestinalis assemblage B isolate GS : is human giardiasis caused by two different species?
  • 2009
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 5:8, s. e1000560-
  • Tidskriftsartikel (refereegranskat)abstract
    • Giardia intestinalis is a major cause of diarrheal disease worldwide and two major Giardia genotypes, assemblages A and B, infect humans. The genome of assemblage A parasite WB was recently sequenced, and the structurally compact 11.7 Mbp genome contains simplified basic cellular machineries and metabolism. We here performed 454 sequencing to 16 x coverage of the assemblage B isolate GS, the only Giardia isolate successfully used to experimentally infect animals and humans. The two genomes show 77% nucleotide and 78% amino-acid identity in protein coding regions. Comparative analysis identified 28 unique GS and 3 unique WB protein coding genes, and the variable surface protein (VSP) repertoires of the two isolates are completely different. The promoters of several enzymes involved in the synthesis of the cyst-wall lack binding sites for encystation-specific transcription factors in GS. Several synteny-breaks were detected and verified. The tetraploid GS genome shows higher levels of overall allelic sequence polymorphism (0.5 versus <0.01% in WB). The genomic differences between WB and GS may explain some of the observed biological and clinical differences between the two isolates, and it suggests that assemblage A and B Giardia can be two different species.
  •  
8.
  • Gorini, Giacomo, et al. (författare)
  • Engagement of monocytes, NK cells, and CD4(+) Th1 cells by ALVAC-SIV vaccination results in a decreased risk of SIVmac251 vaginal acquisition
  • 2020
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 16:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The ALVAC-HIV/gp120/alum regimen tested in 8,197 human volunteers (61.4% males, 38.6% females) in the RV144 trial decreased the risk of HIV infection similarly in both sexes. The ALVAC-SIV/gp120/alum vaccine also reduced the risk of intrarectal SIVmac251 acquisition in both female and male vaccinated macaques at an average of 44% per exposure. In the current work, we tested whether this vaccine modality could also reduce the risk of intravaginal SIVmac251 exposure. In order to detect correlates of risk, we administered the virus by the intravaginal route and tested another vaccine regimen based on the vaccinia derivative poxvirus NYVAC in parallel. We demonstrate here that the ALVAC-SIV/gp120/alum regimen decreases the risk of vaginal SIVmac251 acquisition (50% vaccine efficacy) and, importantly, we confirmed that subsets of monocytes and CD4(+) T cells are correlates of risk of acquisition. In addition, we uncovered cytotoxic vaginal NKG2A(+) cells and gut-homing alpha(4)beta(7) positive plasmablasts as novel correlates of risk of intravaginal virus acquisition. In contrast, NYVAC-SIV vaccination induced high levels of activated T cells and did not protect against SIVmac251 acquisition. We examined the contrasting immune responses to better understand the correlate of protection and found that the unique ability of ALVAC-SIV to activate early interferon responses and the inflammasome during priming differentiates the two poxvirus vectors. This work demonstrates the reproducibility of the efficacy observed in the ALVAC-based regimen and defines novel correlates of risk in the rigorous SIVmac251 macaque model, establishing a benchmark for future improvement of this vaccine approach. The recombinant Canarypox ALVAC-HIV/gp120/alum vaccine regimen was the first to significantly decrease the risk of HIV acquisition in humans, with equal effectiveness in both males and females. Similarly, an equivalent SIV-based ALVAC vaccine regimen decreased the risk of virus acquisition in Indian rhesus macaques of both sexes following intrarectal exposure to low doses of SIVmac251. Here, we demonstrate that the ALVAC-SIV/gp120/alum vaccine is also efficacious in female Chinese rhesus macaques following intravaginal exposure to low doses of SIVmac251 and we confirm that CD14(+) classical monocytes are a strong correlate of decreased risk of virus acquisition. Furthermore, we demonstrate that the frequency of CD14(+) cells and/or their gene expression correlates with blood Type 1 CD4(+) T helper cells, alpha(4)beta(+)(7) plasmablasts, and vaginal cytocidal NKG2A(+) cells. To better understand the correlate of protection, we contrasted the ALVAC-SIV vaccine with a NYVAC-based SIV/gp120 regimen that used the identical immunogen. We found that NYVAC-SIV induced higher immune activation via CD4(+)Ki67(+)CD38(+) and CD4(+)Ki67(+)alpha(4)beta(+)(7) T cells, higher SIV envelope-specific IFN-gamma producing cells, equivalent ADCC, and did not decrease the risk of SIVmac251 acquisition. Using the systems biology approach, we demonstrate that specific expression profiles of plasmablasts, NKG2A(+) cells, and monocytes elicited by the ALVAC-based regimen correlated with decreased risk of virus acquisition.
  •  
9.
  • Grüttner, Jana, et al. (författare)
  • Trophozoite fitness dictates the intestinal epithelial cell response to Giardia intestinalis infection
  • 2023
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 19:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Giardia intestinalis is a non-invasive, protozoan parasite infecting the upper small intestine of most mammals. Symptomatic infections cause the diarrhoeal disease giardiasis in humans and animals, but at least half of the infections are asymptomatic. However, the molecular underpinnings of these different outcomes of the infection are still poorly defined. Here, we studied the early transcriptional response to G. intestinalis trophozoites, the disease-causing life-cycle stage, in human enteroid-derived, 2-dimensional intestinal epithelial cell (IEC) monolayers. Trophozoites preconditioned in media that maximise parasite fitness triggered only neglectable inflammatory transcription in the IECs during the first hours of co-incubation. By sharp contrast, “non-fit” or lysed trophozoites induced a vigorous IEC transcriptional response, including high up-regulation of many inflammatory cytokines and chemokines. Furthermore, “fit” trophozoites could even suppress the stimulatory effect of lysed trophozoites in mixed infections, suggesting active G. intestinalis suppression of the IEC response. By dual-species RNA-sequencing, we defined the IEC and G. intestinalis gene expression programs associated with these differential outcomes of the infection. Taken together, our results inform on how G. intestinalis infection can lead to such highly variable effects on the host, and pinpoints trophozoite fitness as a key determinant of the IEC response to this common parasite.Author summaryDiarrhoeal infectious diseases are still a major problem worldwide, each year killing nearly 800,000 children. These infections are caused by a variety of pathogenic bacteria, viruses, fungi and protozoa. The protozoan parasite Giardia intestinalis is the most common eukaryotic intestinal pathogen found in humans. In contrast to most bacteria and viruses that cause diarrhoea, Giardia parasites elicit a highly variable clinical picture and often do not cause pronounced inflammation in the intestine of infected patients. Here we show, by using human intestinal epithelial cells derived from adult intestinal stem cells, that “fit” Giardia parasites can actively suppress epithelial inflammatory signalling, while their “non-fit” counterparts instead induce inflammatory responses. These two faces of the parasite are associated with specific gene expression programs and may explain the earlier observed high variability in outcome of a Giardia infection, and its modulatory effect on infection by other intestinal pathogens.
  •  
10.
  • Gül, Ersin, et al. (författare)
  • Intraluminal neutrophils limit epithelium damage by reducing pathogen assault on intestinal epithelial cells during Salmonella gut infection
  • 2023
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 19:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Recruitment of neutrophils into and across the gut mucosa is a cardinal feature of intestinal inflammation in response to enteric infections. Previous work using the model pathogen Salmonella enterica serovar Typhimurium (S.Tm) established that invasion of intestinal epithelial cells by S.Tm leads to recruitment of neutrophils into the gut lumen, where they can reduce pathogen loads transiently. Notably, a fraction of the pathogen population can survive this defense, re-grow to high density, and continue triggering enteropathy. However, the functions of intraluminal neutrophils in the defense against enteric pathogens and their effects on preventing or aggravating epithelial damage are still not fully understood. Here, we address this question via neutrophil depletion in different mouse models of Salmonella colitis, which differ in their degree of enteropathy. In an antibiotic pretreated mouse model, neutrophil depletion by an anti-Ly6G antibody exacerbated epithelial damage. This could be linked to compromised neutrophil-mediated elimination and reduced physical blocking of the gut-luminal S.Tm population, such that the pathogen density remained high near the epithelial surface throughout the infection. Control infections with a ssaV mutant and gentamycin-mediated elimination of gut-luminal pathogens further supported that neutrophils are protecting the luminal surface of the gut epithelium. Neutrophil depletion in germ-free and gnotobiotic mice hinted that the microbiota can modulate the infection kinetics and ameliorate epithelium-disruptive enteropathy even in the absence of neutrophil-protection. Together, our data indicate that the well-known protective effect of the microbiota is augmented by intraluminal neutrophils. After antibiotic-mediated microbiota disruption, neutrophils are central for maintaining epithelial barrier integrity during acute Salmonella-induced gut inflammation, by limiting the sustained pathogen assault on the epithelium in a critical window of the infection.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 38
Typ av publikation
tidskriftsartikel (38)
Typ av innehåll
refereegranskat (38)
Författare/redaktör
Mörgelin, Matthias (5)
Malmsten, Martin (5)
Schmidtchen, Artur (4)
Olsen, Björn (3)
Sørensen, Ole E. (2)
Andersson, Dan I. (2)
visa fler...
Wahlgren, Mats (2)
Papareddy, Praveen (2)
Uhlén, Mathias (1)
Schwenk, Jochen M. (1)
Nilsson, Peter (1)
Baumgarten, Maria (1)
Walse, Björn (1)
Hughes, Diarmaid, 19 ... (1)
Nilsson, Ingela (1)
Strömstedt, Adam A. (1)
Sundbom, Magnus (1)
Fernlund, Per (1)
Spillmann, Dorothe (1)
Mi, Jia (1)
Ellström, Patrik (1)
Pettersson, Fredrik (1)
Sandegren, Linus (1)
Berg, Otto, G. (1)
Herwald, Heiko (1)
Meijers, Joost C. M. (1)
Stairs, Courtney W (1)
Normark, Johan (1)
Hägglund, Sara (1)
Vargmar, Karin (1)
Blodörn, Krister (1)
Pringle, John (1)
Valarcher, Jean-Fran ... (1)
Chen, Qijun (1)
Ling, Jiaxin (1)
Estes, Jacob D. (1)
Olsson, Anna-Karin (1)
Webb, Dominic-Luc (1)
Hellström, Per M., 1 ... (1)
Moll, Kirsten (1)
Birnir, Bryndis (1)
Sherwood, Ellen (1)
Pawitan, Yudi (1)
Holmes, Edward C. (1)
Pettersson, John H.- ... (1)
Bergström, Sven (1)
Lundqvist, Katarina (1)
Svärd, Staffan (1)
Ettema, Thijs J. G. (1)
Andersson, Björn (1)
visa färre...
Lärosäte
Karolinska Institutet (9)
Lunds universitet (6)
Umeå universitet (2)
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
visa fler...
Linköpings universitet (1)
Linnéuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (38)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (20)
Naturvetenskap (13)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy