SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1553 7390 OR L773:1553 7404 srt2:(2015-2019);lar1:(umu)"

Search: L773:1553 7390 OR L773:1553 7404 > (2015-2019) > Umeå University

  • Result 1-10 of 23
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Forslund, Josefin M. E., et al. (author)
  • The presence of rNTPs decreases the speed of mitochondrial DNA replication
  • 2018
  • In: PLOS Genetics. - : Public library science. - 1553-7390 .- 1553-7404. ; 14:3
  • Journal article (peer-reviewed)abstract
    • Ribonucleotides (rNMPs) are frequently incorporated during replication or repair by DNA polymerases and failure to remove them leads to instability of nuclear DNA (nDNA). Conversely, rNMPs appear to be relatively well-tolerated in mitochondnal DNA (mtDNA), although the mechanisms behind the tolerance remain unclear. We here show that the human mitochondrial DNA polymerase gamma (Pol gamma) bypasses single rNMPs with an unprecedentedly high fidelity and efficiency. In addition, Pol gamma exhibits a strikingly low frequency of rNMP incorporation, a property, which we find is independent of its exonuclease activity. However, the physiological levels of free rNTPs partially inhibit DNA synthesis by Pol gamma and render the polymerase more sensitive to imbalanced dNTP pools. The characteristics of Pol gamma reported here could have implications for forms of rntDNA depletion syndrome (MDS) that are associated with imbalanced cellular dNTP pools. Our results show that at the rNTPidNIP ratios that are expected to prevail in such disease states, Pol gamma enters a polymerasetexonuclease idling mode that leads to mtDNA replication stalling. This could ultimately lead to mtDNA depletion and, consequently, to mitochondrial disease phenotypes such as those observed in MDS.
  •  
2.
  • Goretti, Daniela, et al. (author)
  • Transcriptional and Post-transcriptional Mechanisms Limit Heading Date 1 (Hd1) Function to Adapt Rice to High Latitudes
  • 2017
  • In: PLOS Genetics. - : PUBLIC LIBRARY SCIENCE. - 1553-7390 .- 1553-7404. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Rice flowering is controlled by changes in the photoperiod that promote the transition to the reproductive phase as days become shorter. Natural genetic variation for flowering time has been largely documented and has been instrumental to define the genetics of the photoperiodic pathway, as well as providing valuable material for artificial selection of varieties better adapted to local environments. We mined genetic variation in a collection of rice varieties highly adapted to European regions and isolated distinct variants of the long day repressor HEADING DATE 1 (Hd1) that perturb its expression or protein function. Specific variants allowed us to define novel features of the photoperiodic flowering pathway. We demonstrate that a histone fold domain scaffold formed by GRAIN YIELD, PLANT HEIGHT AND HEADING DATE 8 (Ghd8) and several NF-YC subunits can accommodate distinct proteins, including Hd1 and PSEUDO RESPONSE REGULATOR 37 (PRR37), and that the resulting OsNF-Y complex containing Hd1 can bind a specific sequence in the promoter of HEADING DATE 3A (Hd3a). Artificial selection has locally favored an Hd1 variant unable to assemble in such heterotrimeric complex. The causal polymorphism was defined as a single conserved lysine in the CCT domain of the Hd1 protein. Our results indicate how genetic variation can be stratified and explored at multiple levels, and how its description can contribute to the molecular understanding of basic developmental processes.
  •  
3.
  • Graff, M., et al. (author)
  • Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults
  • 2017
  • In: PLoS Genet. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 13:4
  • Journal article (peer-reviewed)abstract
    • Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by similar to 30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.
  •  
4.
  • Jafari, Shadi, et al. (author)
  • Cis-Regulatory Mechanisms for Robust Olfactory Sensory Neuron Class-restricted Odorant Receptor Gene Expression in Drosophila
  • 2015
  • In: PLOS Genetics. - : Public Library of Science. - 1553-7390 .- 1553-7404. ; 11:3
  • Journal article (peer-reviewed)abstract
    • Odor perception requires that each olfactory sensory neuron (OSN) class continuously express a single odorant receptor (OR) regardless of changes in the environment. However, little is known about the control of the robust, class-specific OR expression involved. Here, we investigate the cis-regulatory mechanisms and components that generate robust and OSN class-specific OR expression in Drosophila. Our results demonstrate that the spatial restriction of expression to a single OSN class is directed by clusters of transcription-factor DNA binding motifs. Our dissection of motif clusters of differing complexity demonstrates that structural components such as motif overlap and motif order integrate transcription factor combinations and chromatin status to form a spatially restricted pattern. We further demonstrate that changes in metabolism or temperature perturb the function of complex clusters. We show that the cooperative regulation between motifs around and within the cluster generates robust, class-specific OR expression.
  •  
5.
  • Jakobsdottir, Johanna, et al. (author)
  • Rare Functional Variant in TM2D3 is Associated with Late-Onset Alzheimer's Disease
  • 2016
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 12:10
  • Journal article (peer-reviewed)abstract
    • We performed an exome-wide association analysis in 1393 late-onset Alzheimer's disease (LOAD) cases and 8141 controls from the CHARGE consortium. We found that a rare variant (P155L) in TM2D3 was enriched in Icelanders (similar to 0.5% versus < 0.05% in other European populations). In 433 LOAD cases and 3903 controls from the Icelandic AGES substudy, P155L was associated with increased risk and earlier onset of LOAD [odds ratio (95% CI) = 7.5 (3.5-15.9), p = 6.6x10(-9)]. Mutation in the Drosophila TM2D3 homolog, almondex, causes a phenotype similar to loss of Notch/Presenilin signaling. Human TM2D3 is capable of rescuing these phenotypes, but this activity is abolished by P155L, establishing it as a functionally damaging allele. Our results establish a rare TM2D3 variant in association with LOAD susceptibility, and together with prior work suggests possible links to the beta-amyloid cascade.
  •  
6.
  • Kasparek, Petr, et al. (author)
  • KLK5 and KLK7 Ablation Fully Rescues Lethality of Netherton Syndrome-Like Phenotype
  • 2017
  • In: PLOS Genetics. - : PUBLIC LIBRARY SCIENCE. - 1553-7390 .- 1553-7404. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Netherton syndrome (NS) is a severe skin disease caused by the loss of protease inhibitor LEKTI, which leads to the dysregulation of epidermal proteases and severe skin-barrier defects. KLK5 was proposed as a major protease in NS pathology, however its inactivation is not sufficient to rescue the lethal phenotype of LEKTI-deficient mice. In this study, we further elucidated the in vivo roles of the epidermal proteases in NS using a set of mouse models individually or simultaneously deficient for KLK5 and KLK7 on the genetic background of a novel NS-mouse model. We show that although the ablation of KLK5 or KLK7 is not sufficient to rescue the lethal effect of LEKTI-deficiency simultaneous deficiency of both KLKs completely rescues the epidermal barrier and the postnatal lethality allowing mice to reach adulthood with fully functional skin and normal hair growth. We report that not only KLK5 but also KLK7 plays an important role in the inflammation and defective differentiation in NS and KLK7 activity is not solely dependent on activation by KLK5. Altogether, these findings show that unregulated activities of KLK5 and KLK7 are responsible for NS development and both proteases should become targets for NS therapy.
  •  
7.
  • Kim, Maria, et al. (author)
  • RNA-on-X 1 and 2 in Drosophila melanogaster fulfill separate functions in dosage compensation
  • 2018
  • In: PLOS Genetics. - : Public Library Science. - 1553-7390 .- 1553-7404. ; 14:12
  • Journal article (peer-reviewed)abstract
    • In Drosophila melanogaster, the male-specific lethal (MSL) complex plays a key role in dosage compensation by stimulating expression of male X-chromosome genes. It consists of MSL proteins and two long noncoding RNAs, roX1 and roX2, that are required for spreading of the complex on the chromosome and are redundant in the sense that loss of either does not affect male viability. However, despite rapid evolution, both roX species are present in diverse Drosophilidae species, raising doubts about their full functional redundancy. Thus, we have investigated consequences of deleting roX1 and/or roX2 to probe their specific roles and redundancies in D. melanogaster. We have created a new mutant allele of roX2 and show that roX1 and roX2 have partly separable functions in dosage compensation. In larvae, roX1 is the most abundant variant and the only variant present in the MSL complex when the complex is transmitted (physically associated with the X-chromosome) in mitosis. Loss of roX1 results in reduced expression of the genes on the X-chromosome, while loss of roX2 leads to MSL-independent upregulation of genes with male-biased testis-specific transcription. In roX1 roX2mutant, gene expression is strongly reduced in a manner that is not related to proximity to high-affinity sites. Our results suggest that high tolerance of mis-expression of the X-chromosome has evolved. We propose that this may be a common property of sex-chromosomes, that dosage compensation is a stochastic process and its precision for each individual gene is regulated by the density of high-affinity sites in the locus.
  •  
8.
  • Kumar, Anmol, et al. (author)
  • GDNF Overexpression from the Native Locus Reveals its Role in the Nigrostriatal Dopaminergic System Function
  • 2015
  • In: PLOS Genetics. - : PLoS. - 1553-7390 .- 1553-7404. ; 11:12
  • Journal article (peer-reviewed)abstract
    • Degeneration of nigrostriatal dopaminergic system is the principal lesion in Parkinson's disease. Because glial cell line-derived neurotrophic factor (GDNF) promotes survival of dopamine neurons in vitro and in vivo, intracranial delivery of GDNF has been attempted for Parkinson's disease treatment but with variable success. For improving GDNF-based therapies, knowledge on physiological role of endogenous GDNF at the sites of its expression is important. However, due to limitations of existing genetic model systems, such knowledge is scarce. Here, we report that prevention of transcription of Gdnf 3'UTR in Gdnf endogenous locus yields GDNF hypermorphic mice with increased, but spatially unchanged GDNF expression, enabling analysis of postnatal GDNF function. We found that increased level of GDNF in the central nervous system increases the number of adult dopamine neurons in the substantia nigra pars compacta and the number of dopaminergic terminals in the dorsal striatum. At the functional level, GDNF levels increased striatal tissue dopamine levels and augmented striatal dopamine release and re-uptake. In a proteasome inhibitor lactacystin-induced model of Parkinson's disease GDNF hypermorphic mice were protected from the reduction in striatal dopamine and failure of dopaminergic system function. Importantly, adverse phenotypic effects associated with spatially unregulated GDNF applications were not observed. Enhanced GDNF levels up-regulated striatal dopamine transporter activity by at least five fold resulting in enhanced susceptibility to 6-OHDA, a toxin transported into dopamine neurons by DAT. Further, we report how GDNF levels regulate kidney development and identify microRNAs miR-9, miR-96, miR-133, and miR-146a as negative regulators of GDNF expression via interaction with Gdnf 3'UTR in vitro. Our results reveal the role of GDNF in nigrostriatal dopamine system postnatal development and adult function, and highlight the importance of correct spatial expression of GDNF. Furthermore, our results suggest that 3'UTR targeting may constitute a useful tool in analyzing gene function.
  •  
9.
  • Leo, P. J., et al. (author)
  • Defining the genetic susceptibility to cervical neoplasia-A genome-wide association study
  • 2017
  • In: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 13:8
  • Journal article (peer-reviewed)abstract
    • A small percentage of women with cervical HPV infection progress to cervical neoplasia, and the risk factors determining progression are incompletely understood. We sought to define the genetic loci involved in cervical neoplasia and to assess its heritability using unbiased unrelated case/control statistical approaches. We demonstrated strong association of cervical neoplasia with risk and protective HLA haplotypes that are determined by the amino-acids carried at positions 13 and 71 in pocket 4 of HLA-DRB1 and position 156 in HLA-B. Furthermore, 36% (standard error 2.4%) of liability of HPV-associated cervical pre-cancer and cancer is determined by common genetic variants. Women in the highest 10% of genetic risk scores have approximately > 7.1% risk, and those in the highest 5% have approximately > 21.6% risk, of developing cervical neoplasia. Future studies should examine genetic risk prediction in assessing the risk of cervical neoplasia further, in combination with other screening methods.
  •  
10.
  • Li, X. L., et al. (author)
  • Mck1 defines a key S-phase checkpoint effector in response to various degrees of replication threats
  • 2019
  • In: Plos Genetics. - San Francisco : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 15:8
  • Journal article (peer-reviewed)abstract
    • The S-phase checkpoint plays an essential role in regulation of the ribonucleotide reductase (RNR) activity to maintain the dNTP pools. How eukaryotic cells respond appropriately to different levels of replication threats remains elusive. Here, we have identified that a conserved GSK-3 kinase Mck1 cooperates with Dun1 in regulating this process. Deleting MCK1 sensitizes dun1 Delta to hydroxyurea (HU) reminiscent of mec1 Delta or rad53 Delta. While Mck1 is downstream of Rad53, it does not participate in the post-translational regulation of RNR as Dun1 does. Mck1 phosphorylates and releases the Crt1 repressor from the promoters of DNA damage-inducible genes as RNR2-4 and HUG1. Hug1, an Rnr2 inhibitor normally silenced, is induced as a counterweight to excessive RNR. When cells suffer a more severe threat, Mck1 inhibits HUG1 transcription. Consistently, only a combined deletion of HUG1 and CRT1, confers a dramatic boost of dNTP levels and the survival of mck1 Delta dun1 Delta or mec1 Delta cells assaulted by a lethal dose of HU. These findings reveal the division-of-labor between Mck1 and Dun1 at the S-phase checkpoint pathway to fine-tune dNTP homeostasis. Author summary The appropriate amount and balance of four dNTPs are crucial for all cells correctly copying and passing on their genetic material generation by generation. Eukaryotes have developed an alert and response system to deal with the disturbance. Here, we uncovered a second-level effector branch. It is activated by the upstream surveillance kinase cascade, which can induce the expression of dNTP-producing enzymes. It can also reduce the inhibitor of these enzymes to further boost their activity according to the degrees of threats. These findings suggest a multi-level response system to guarantee the appropriate dNTP supply, which is essential to maintain genetic stability under various environmental challenges.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view