SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1613 6810 OR L773:1613 6829 ;lar1:(su)"

Sökning: L773:1613 6810 OR L773:1613 6829 > Stockholms universitet

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cronholm, Pontus, et al. (författare)
  • Intracellular Uptake and Toxicity of Ag and CuO Nanoparticles : A Comparison Between Nanoparticles and their Corresponding Metal Ions
  • 2013
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 9:7, s. 970-982
  • Tidskriftsartikel (refereegranskat)abstract
    • An increased understanding of nanoparticle toxicity and its impact on human health is essential to enable a safe use of nanoparticles in our society. The aim of this study is to investigate the role of a Trojan horse type mechanism for the toxicity of Ag-nano and CuO-nano particles and their corresponding metal ionic species (using CuCl2 and AgNO3), i.e., the importance of the solid particle to mediate cellular uptake and subsequent release of toxic species inside the cell. The human lung cell lines A549 and BEAS-2B are used and cell death/membrane integrity and DNA damage are investigated by means of trypan blue staining and the comet assay, respectively. Chemical analysis of the cellular dose of copper and silver is performed using atomic absorption spectroscopy. Furthermore, transmission electron microscopy, laser scanning confocal microscopy, and confocal Raman microscopy are employed to study cellular uptake and particle-cell interactions. The results confirm a high uptake of CuO-nano and Ag-nano compared to no, or low, uptake of the soluble salts. CuO-nano induces both cell death and DNA damage whereas CuCl2 induces no toxicity. The opposite is observed for silver, where Ag-nano does not cause any toxicity, whereas AgNO3 induces a high level of cell death. In conclusion: CuO-nano toxicity is predominantly mediated by intracellular uptake and subsequent release of copper ions, whereas no toxicity is observed for Ag-nano due to low release of silver ions within short time periods.
  •  
2.
  • De Sloovere, Dries, et al. (författare)
  • Phase Engineering via Aluminum Doping Enhances the Electrochemical Stability of Lithium-Rich Cobalt-Free Layered Oxides for Lithium-Ion Batteries
  • 2024
  • Ingår i: Small. - 1613-6810 .- 1613-6829.
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium-rich, cobalt-free oxides are promising potential positive electrode materials for lithium-ion batteries because of their high energy density, lower cost, and reduced environmental and ethical concerns. However, their commercial breakthrough is hindered because of their subpar electrochemical stability. This work studies the effect of aluminum doping on Li1.26Ni0.15Mn0.61O2 as a lithium-rich, cobalt-free layered oxide. Al doping suppresses voltage fade and improves the capacity retention from 46% for Li1.26Ni0.15Mn0.61O2 to 67% for Li1.26Ni0.15Mn0.56Al0.05O2 after 250 cycles at 0.2 C. The undoped material has a monoclinic Li2MnO3-type structure with spinel on the particle edges. In contrast, Al-doped materials (Li1.26Ni0.15Mn0.61-xAlxO2) consist of a more stable rhombohedral phase at the particle edges, with a monoclinic phase core. For this core-shell structure, the formation of Mn3+ is suppressed along with the material's decomposition to a disordered spinel, and the amount of the rhombohedral phase content increases during galvanostatic cycling. Whereas previous studies generally provided qualitative insight into the degradation mechanisms during electrochemical cycling, this work provides quantitative information on the stabilizing effect of the rhombohedral shell in the doped sample. As such, this study provides fundamental insight into the mechanisms through which Al doping increases the electrochemical stability of lithium-rich cobalt-free layered oxides.
  •  
3.
  • Fan, Ke, et al. (författare)
  • Sacrificial W Facilitates Self-Reconstruction with Abundant Active Sites for Water Oxidation
  • 2022
  • Ingår i: Marine and Petroleum Geology. - : Wiley. - 0264-8172 .- 1873-4073. ; 138
  • Tidskriftsartikel (refereegranskat)abstract
    • Water oxidation is an important reaction for multiple renewable energy conversion and storage-related devices and technologies. High-performance and stable electrocatalysts for the oxygen evolution reaction (OER) are urgently required. Bimetallic (oxy)hydroxides have been widely used in alkaline OER as electrocatalysts, but their activity is still not satisfactory due to insufficient active sites. In this research, A unique and efficient approach of sacrificial W to prepare CoFe (oxy)hydroxides with abundant active species for OER is presented. Multiple ex situ and operando/in situ characterizations have validated the self-reconstruction of the as-prepared CoFeW sulfides to CoFe (oxy) hydroxides in alkaline OER with synchronous W etching. Experiments and theoretical calculations show that the sacrificial W in this process induces metal cation vacancies, which facilitates the in situ transformation of the intermediate metal hydroxide to CoFe-OOH with more high-valence Co(III), thus creating abundant active species for OER. The Co(III)-rich environment endows the in situ formed CoFe oxyhydroxide with high catalytic activity for OER on a simple flat glassy carbon electrode, outperforming those not treated by the sacrificial W procedure. This research demonstrates the influence of etching W on the electrocatalytic performance, and provides a low-cost means to improve the active sites of the in situ self-reconstructed bimetallic oxyhydroxides for OER.
  •  
4.
  • Garcia Fernandez, Alberto, et al. (författare)
  • Experimental and Theoretical Core Level and Valence Band Analysis of Clean Perovskite Single Crystal Surfaces
  • 2022
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 18:13
  • Tidskriftsartikel (refereegranskat)abstract
    • A detailed understanding of the surface and interface properties of lead halide perovskites is of interest for several applications, in which these materials may be used. To develop this understanding, the study of clean crystalline surfaces can be an important stepping stone. In this work, the surface properties and electronic structure of two different perovskite single crystal compositions (MAPbI(3) and Cs(x)FA(1-)(x)PbI(3)) are investigated using synchrotron-based soft X-ray photoelectron spectroscopy (PES), molecular dynamics simulations, and density functional theory. The use of synchrotron-based soft X-ray PES enables high surface sensitivity and nondestructive depth-profiling. Core level and valence band spectra of the single crystals are presented. The authors find two carbon 1s contributions at the surface of MAPbI(3) and assign these to MA(+) ions in an MAI-terminated surface and to MA(+) ions below the surface. It is estimated that the surface is predominantly MAI-terminated but up to 30% of the surface can be PbI2-terminated. The results presented here can serve as reference spectra for photoelectron spectroscopy investigations of technologically relevant polycrystalline thin films, and the findings can be utilized to further optimize the design of device interfaces.
  •  
5.
  • Hammond, Oliver S., et al. (författare)
  • Molecular Architecture Effects on Bulk Nanostructure in Bis(Orthoborate) Ionic Liquids
  • 2023
  • Ingår i: Small. - : John Wiley and Sons Inc. - 1613-6810 .- 1613-6829.
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of 19 ionic liquids (ILs) based on phosphonium and imidazolium cations of varying alkyl-chain lengths with the orthoborate anions bis(oxalato)borate [BOB]−, bis(mandelato)borate, [BMB]− and bis(salicylato)borate, [BScB]−, are synthesized and studied using small-angle neutron scattering (SANS). All measured systems display nanostructuring, with 1-methyl-3-n-alkyl imidazolium-orthoborates forming clearly bicontinuous L3 spongelike phases when the alkyl chains are longer than C6 (hexyl). L3 phases are fitted using the Teubner and Strey model, and diffusely-nanostructured systems are primarily fitted using the Ornstein-Zernicke correlation length model. Strongly-nanostructured systems have a strong dependence on the cation, with molecular architecture variation explored to determine the driving forces for self-assembly. The ability to form well-defined complex phases is effectively extinguished in several ways: methylation of the most acidic imidazolium ring proton, replacing the imidazolium 3-methyl group with a longer hydrocarbon chain, substitution of [BOB]− by [BMB]−, or exchanging the imidazolium for phosphonium systems, irrespective of phosphonium architecture. The results suggest there is only a small window of opportunity, in terms of molecular amphiphilicity and cation:anion volume matching, for the formation of stable extensive bicontinuous domains in pure bulk orthoborate-based ILs. Particularly important for self-assembly processes appear to be the ability to form H-bonding networks, which offer additional versatility in imidazolium systems. © 2023 The Authors.
  •  
6.
  • Liu, Chang, et al. (författare)
  • Oligomer Dynamics of LL-37 Truncated Fragments Probed by α-Hemolysin Pore and Molecular Simulations
  • 2023
  • Ingår i: Small. - 1613-6810 .- 1613-6829. ; 19:37
  • Tidskriftsartikel (refereegranskat)abstract
    • Oligomerization of antimicrobial peptides (AMPs) is critical in their effects on pathogens. LL-37 and its truncated fragments are widely investigated regarding their structures, antimicrobial activities, and application, such as developing new antibiotics. Due to the small size and weak intermolecular interactions of LL-37 fragments, it is still elusive to establish the relationship between oligomeric states and antimicrobial activities. Here, an α-hemolysin nanopore, mass spectrometry (MS), and molecular dynamic (MD) simulations are used to characterize the oligomeric states of two LL-37 fragments. Nanopore studies provide evidence of trapping events related to the oligomer formation and provide further details on their stabilities, which are confirmed by MS and MD simulations. Furthermore, simulation results reveal the molecular basis of oligomer dynamics and states of LL-37 fragments. This work provides unique insights into the relationship between the oligomer dynamics of AMPs and their antimicrobial activities at the single-molecule level. The study demonstrates how integrating methods allows deciphering single molecule level understanding from nanopore sensing approaches. 
  •  
7.
  • Lv, Zhong-Peng, et al. (författare)
  • Time-Resolved SAXS Study of Polarity- and Surfactant-Controlled Superlattice Transformations of Oleate-Capped Nanocubes During Solvent Removal
  • 2022
  • Ingår i: Small. - : John Wiley and Sons Inc. - 1613-6810 .- 1613-6829. ; 18:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural transformations and lattice expansion of oleate-capped iron oxide nanocube superlattices are studied by time-resolved small-angle X-ray scattering (SAXS) during solvent removal. The combination of conductor-like screening model for real solvents (COSMO-RS) theory with computational fluid dynamics (CFD) modeling provides information on the solvent composition and polarity during droplet evaporation. Evaporation-driven poor-solvent enrichment in the presence of free oleic acid results in the formation of superlattices with a tilted face-centered cubic (fcc) structure when the polarity reaches its maximum. The tilted fcc lattice expands subsequently during the removal of the poor solvent and eventually transforms to a regular simple cubic (sc) lattice during the final evaporation stage when only free oleic acid remains. Comparative studies show that both the increase in polarity as the poor solvent is enriched and the presence of a sufficient amount of added oleic acid is required to promote the formation of structurally diverse superlattices with large domain sizes. © 2022 The Authors. 
  •  
8.
  • Majidi, Leily, et al. (författare)
  • Nanostructured Conductive Metal Organic Frameworks for Sustainable Low Charge Overpotentials in Li-Air Batteries
  • 2022
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 18:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium–oxygen batteries are among the most attractive alternatives for future electrified transportation. However, their practical application is hindered by many obstacles. Due to the insulating nature of Li2O2 product and the slow kinetics of reactions, attaining sustainable low charge overpotentials at high rates becomes a challenge resulting in the battery's early failure and low round trip efficiency. Herein, outstanding characteristics are discovered of a conductive metal organic framework (c-MOF) that promotes the growth of nanocrystalline Li2O2 with amorphous regions. This provides a platform for the continuous growth of Li2O2 units away from framework, enabling a fast discharge at high current rates. Moreover, the Li2O2 structure works in synergy with the redox mediator (RM). The conductivity of the amorphous regions of the Li2O2 allows the RM to act directly on the Li2O2 surface instead of catalyst edges and then transport through the electrolyte to the Li2O2 surface. This direct charge transfer enables a small charge potential of <3.7 V under high current densities (1–2 A g−1) sustained for a long cycle life (100–300 cycles) for large capacities (1000–2000 mAh g−1). These results open a new direction for utilizing c-MOFs towards advanced energy storage systems.
  •  
9.
  • Midander, K., et al. (författare)
  • Surface characteristics, copper release and toxicity of nano- and micron sized copper and copper(II)oxide particles : A cross-disciplinary study
  • 2009
  • Ingår i: Small (Weinheim an der Bergstrasse, Germany). - : Wiley. - 1613-6810 .- 1613-6829. ; 5:3, s. 389-399
  • Tidskriftsartikel (refereegranskat)abstract
    • An interdisciplinary and multianalytical research effort is undertaken to assess the toxic aspects of thoroughly characterized nano- and micrometer-sized particles of oxidized metallic copper and copper(II) oxide in contact with cultivated lung cells, as well as copper release in relevant media. All particles, except micrometer-sized Cu, release more copper in serum-containing cell medium (supplemented Dulbecco's minimal essential medium) compared to identical exposures in phosphate-buffered saline. Sonication of particles for dispersion prior to exposure has a large effect on the initial copper release from Cu nanoparticles. A clear size-dependent effect is observed from both a copper release and a toxicity perspective. In agreement with greater released amounts of copper per quantity of particles from the nanometer-sized particles compared to the micrometer-sized particles, the nanometer particles cause a higher degree of DNA damage (single-strand breaks) and cause a significantly higher percentage of cell death compared to cytotoxicity induced by micrometer-sized particles. Cytotoxic effects related to the released copper fraction are found to be significantly lower than the effects related to particles. No DNA damage is induced by the released copper fraction.
  •  
10.
  • Moreno, Adrian, et al. (författare)
  • Breathable Lignin Nanoparticles as Reversible Gas Swellable Nanoreactors
  • 2023
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 19:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The design of stimuli-responsive lignin nanoparticles (LNPs) for advanced applications has hitherto been limited to the preparation of lignin-grafted polymers in which usually the lignin content is low (<25 wt.%) and its role is debatable. Here, the preparation of O2-responsive LNPs exceeding 75 wt.% in lignin content is shown. Softwood Kraft lignin (SKL) is coprecipitated with a modified SKL fluorinated oleic acid ester (SKL-OlF) to form colloidal stable hybrid LNPs (hy-LNPs). The hy-LNPs with a SKL-OlF content ranging from 10 to 50 wt.% demonstrated a reversible swelling behavior upon O2/N2 bubbling, increasing their size – ≈35% by volume – and changing their morphology from spherical to core-shell. Exposition of hy-LNPs to O2 bubbling promotes a polarity change on lignin-fluorinated oleic chains, and consequently their migration from the inner part to the surface of the particle, which not only increases the particle size but also endows hy-LNPs with enhanced stability under harsh conditions (pH < 2.5) by the hydration barrier effect. Furthermore, it is also demonstrated that these new stimuli-responsive particles as gas tunable nanoreactors for the synthesis of gold nanoparticles. Combining a straightforward preparation with their enhanced stability and responsiveness to O2 gas these new LNPs pave the way for the next generation of smart lignin-based nanomaterials. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy